光通讯
HOME
光通讯
正文内容
光通讯 电路 卫星间的光链路通信技术:最新的前沿通信技术介绍
发布时间 : 2024-10-06
作者 : 小编
访问数量 : 23
扫码分享至微信

卫星间的光链路通信技术:最新的前沿通信技术介绍

题记:着眼于广泛的互联网接入和防御,许多航天机构和公司已经将目光投向了用于卫星到卫星通信的激光通信系统。

光学和激光技术的创新开创了低地球轨道(LEO)卫星通信的爆炸式增长时代,其应用范围从宽带互联网到弹道导弹探测应用等。

自1990年代末以来,全球对数据的需求以惊人的速度增长。从在线游戏到高分辨率信息娱乐系统,消费者对低延迟、高吞吐量连接的需求一直永无止境。

但是,推动这种数据需求的不仅仅有消费者;也包括政府和国防机构的需求。在当今快速发展的地缘政治局势中,军方寻求快速准确的威胁探测能力。为了满足这一需求,低地球轨道(LEO)卫星星座通信在连接当今世界的方方面面发挥着越来越重要的作用。

LEO星座需要减少延迟

虽然卫星通信技术几十年来在通信基础设施中发挥了关键作用,但近年来对低地轨道"星座"通信系统进行了大量投资。一个低等轨道星座——比如SpaceX的Starlink——由数十颗甚至数百颗相互通信并将信息传输到地面的卫星组成。

近低地球轨道通常被定义为距离地球表面不到1000公里的轨道。与地球相对静止的地球轨道(GEO)和中地球轨道(MEO)卫星系统相比,低地轨道系统的主要优点是它们靠近地球,而这种接近度降低了信号到地面的传播延迟。

LEO,MEO和GEO卫星相对于地球位置的比较

此外,低地轨道系统中的卫星通常比地球静止轨道或MEO系统中的卫星更近。这意味着在LEO卫星之间传输光学数据所需的硬件可以更小,功耗更低。除了SpaceX之外,总部位于英国的OneWeb Technologies公司也发射了几百颗LEO卫星。Starlink和OneWeb的星座都旨在在全球范围内提供宽带互联网接入。

光学通信提高传输吞吐量

虽然射频(RF)技术历来用于卫星间通信,但现代卫星越来越多地使用基于激光的(光学)技术来使相互之间进行通信。

基于激光的技术有两个主要优点。首先,由于红外激光波的频率高于无线电波(意味着更短的波长),因此它们可以将更多信息打包到单个传输中。其次,与无线电波相比,激光在长距离上的色散较小。这意味着它们更难拦截,而这种传播特性增加了数据传输的安全性。

无线电波和红外激光之间的波长比较

卫星之间的光通信剖析

用于卫星间通信的光学系统由三个关键组件组成:接收器(RX),发射器(TX)和用于输出和传入激光束的放大倍率和方向的望远模块(telescopic module)。

在发射器中,电数据信号通过光参考和调制器转换为光域信号。在接收器中,望远模块(telescopic module)用于聚焦入射光束,并通过将其与馈送到本地振荡器的伪随机噪声序列相结合,将其转换为电信号。反馈环路用于确保本地振荡器保持与传输的传入数据具有相同的相位和频率。这在概念上类似于锁相环(PLL),而后者是许多电子电路中的基本组件。

用于空间通信的光收发系统框图

由于基于激光的通信是点对点的,因此在卫星星座系统中集成跟踪机制也是必不可少的。这样,发射卫星就可以定位接收卫星。这在技术上被称为采集和跟踪系统。

粗定位系统(CPS)将发射/接收光学系统定位到正确传输和接收光信号所需的大致位置。精细定位系统(FPS)定位系统,因此可以建立和维护激光通信链路。

上图显示了采集、粗指向和精细指向的流程图

同时,光传输系统和跟踪系统协同工作,在卫星之间建立通信链路。

用于卫星的光子IC获得牵引力

随着LEO卫星系统获得市场牵引力,基于微型光子集成电路(PIC)的光通信解决方案也随之获得牵引力。2018年,Tesat发布了世界上最小的CubeSats激光通信终端之一,名为CubeL。几年后的2021年,Tesat宣布成功测试ConLCT80,这是一款微型光通信终端,适用于美国政府项目。

Tesat ConLCT80,用于光卫星通信的微型激光通信终端

此外,目前正在对基于PIC的解决方案进行研究,以解决卫星间光通信挑战。PIC是在光域中工作的电路。根据UCSB的研究人员的说法,与传统系统相比,基于PIC的激光器具有更低的成本,尺寸,重量和功率。使用紧凑型掺铒光纤放大器(EDFA),基于PIC的光学激光器系统可以小至6 mm。

基于PIC的光通信系统采用紧凑型EDFA

由于太空中的极端环境条件,这些PIC必须像电气对应物一样具有耐辐射性。例如,NeoPhotonics Corporation最近宣布了一种耐辐射、可调谐激光器,用于LEO卫星系统。

卫星间通信的未来

由于基于激光的卫星间通信系统已经部署在LEO星座中,很明显该技术将继续存在。除了通过Starlink和OneWeb Technologies的星座提供互联网宽带接入外,政府和国防承包商还热衷于部署自己的光学LEO卫星网络。

美国航天发展署计划部署自己的低地轨道星座,配备各种军事用途的传感器。此外,该机构计划与L3Harris Technologies和SpaceX合作,使用LEO星座实现先进的导弹跟踪能力。

中科大团队构筑“三电极”光电二极管,大幅缩小光通信系统体积

“我们首次提出并实现了基于场效应调制的光电二极管,并展示了其在光通信和光逻辑运算中的巨大潜力。” 中国科学技术大学孙海定教授表示。

图 | 孙海定(来源:孙海定)

近日,他和团队的这篇论文发在 Nature Electronics 的当期封面。

其表示:“目前在 Nature Electronics 发表的所有封面论文中,我们发现中国大陆平均 1 年多、甚至有时 2 年左右才会有 1 篇论文被选为封面论文。”

因此,此次封面论文的发布,让整个课题组倍感荣幸和激励。

图 | 封面图片(来源:Nature Electronics)

研究中,课题组通过单片集成的方法,在氮化镓基紫外发光二极管的 p 型导电层上,造出一个由“金属-氧化物绝缘体-半导体”构成的电容器结构。

通过此,他们构筑了一个具有三个端口的发光二极管,并为其配以新器件的符号。

图 |三电极发光和探测二极管的结构示意图和对应的新器件符号(来源:Nature Electronics)

在原有发光二极管上施加偏压的同时,当在第三端口上配置特定的工作电压,这款三端二光电极管就能展示出独特的工作模式和状态,从而能够充当可调谐型光发射器或多功能光电探测器。

图 | 将单片集成三电极二极管用于光通信中(来源:Nature Electronics)

当三电极二极管作为光发射器工作时,由于第三端口实现了集成“偏置器”的功能,即输出光功率可以受到第三电极的偏置电压调控。

因此,当它被接入光通信系统之中时,可以与已连接外部偏置器的常规发光二极管实现相同的功能。

与采用外部偏置器的系统相比,三电极二极管由于能够减小寄生电容,因此具有更高频带带宽,提升幅度达到 60%,在同尺寸器件中达到国际最高水平。

孙海定表示,这种三端二极管的面世,不仅减少了光通信系统对于外部偏置器电路的需求,也实现了体积更小、带宽更宽的光通信系统。

图 | 单片集成三电极二极管用于光控逻辑器件(来源:Nature Electronics)

有趣的是,当三电极二极管切换为光电二极管模式工作时,会受到第三端口施加的电压与入射光的同时控制,从而能够实现可重构的高速光电逻辑门,例如“NAND”和“NOR”等。

而且,在切换不同的逻辑门时,无需对器件本身的结构进行任何改变。

基于通用逻辑门 NOR 和 NAND,可以生成任何逻辑布尔表达式,这时只需利用同种器件就能形成完整的逻辑电路。

研究中,他们不仅实现了性能提升,而且基于单片集成技术将传统光通信系统中的“偏置器”集成于器件第三电极,在实现器件通信带宽性能提升的同时,也大幅缩小了光通信系统的体积和面积。

这有利于进一步地推动下一代高速、体积小、多功能光电集成芯片和系统的发展。

由于这款器件的结构和制作工艺十分简单,因此本次提出的新型场效应调控光电二极管架构,可被广泛用于由各种半导体材料制成的有源光电子集成芯片和器件平台上,推动下一代高速、多功能光电集成芯片的发展。

突破现有电子系统技术瓶颈与极限

据了解,随着人工智能时代的到来和数字化转型的深入发展,人们对于高数据传输速度和高数据计算性能的半导体芯片需求正在不断增长。

在数据高速传输和处理需求的驱动下,集成电路芯片技术呈现出高集成度和多元化的发展态势。

其中,以光子作为信息载体的光电子集成芯片及其相关技术的潜力,正不断被挖掘和开发。

光电子芯片,是由光电子器件和微电子器件等多种基础元件组合而成的新型芯片架构。

它能将电、光等多种形式的信号进行相互转换、传输和处理,有望与传统集成电路器件相互交融和互补,克服摩尔定律带来的器件物理尺寸极限的限制和瓶颈。

其中,作为光电集成芯片中的必需元件,光电二极管已被广泛用于发光单元和探测单元。

然而,现有的光电二极管,均需配置相应的外部驱动电路,只有这样才能实现电信号和光信号之间的转换。

这一架构极大地限制了整个光电系统的信号传输速度和带宽,也不可避免地会增大系统的体积和复杂度,以至于限制了光电技术的集成与发展。

因此,如何打破传统模式,突破现有电子系统技术瓶颈与极限,已经成为光电集成领域的研究焦点。

巴基斯坦留学生几年未回祖国,国内同学临过年才走

多年来,孙海定一直深耕氮化镓材料和器件领域,并努力研究它们在固态照明、显示成像和探测等领域的应用。

同时,他和课题组也非常关注该类技术在新兴光电集成及光通信、光计算等领域的拓展。

而当研究基于紫外微型发光二极管的日盲光通信系统时候,在搭建和测试过程中他们发现光信号发射模块中的偏置器(bias-tee),对于信号的有效传输至关重要。

为了满足系统搭建的需求,该团队尝试了市面上所有型号的偏置器。

但是,庞大的系统搭建起来总是非常麻烦,而且对于整个系统的调制带宽性能来说,它很容易受到偏置器这一模块质量好坏的影响。

有一天,他们坐在一起讨论如何简化和优化日盲光通信系统。

这时,孙海定和学生余华斌、以及来自巴基斯坦的留学生穆罕默德·胡纳因·梅门(Muhammad Hunain Memon)突然脑洞大开:考虑到偏置器本身就是一个“元件或电路模块”,能否通过单片集成技术将偏置器直接集成到发光二极管光源上?

然而,直接在氮化镓晶圆上实现偏置器功能的电容和电感电路似乎并不高明,因为这种方案会让芯片制备工艺变得复杂,而且电容和电感的性能也无法保证,同时也会严重影响光通信质量。

突然,余华斌随口说道:“为什么要那么复杂?为什么不利用半导体器件中经典的场效应来实现信号调制功能呢?”

此时,孙海定脑海中浮现出将发光二极管结构与一个“新功能电极”(即论文中的“第三个电极”)组合起来的架构。

从传统意义上来说,基于金属-氧化物-半导体(MOS,metal-oxide-semiconductor)这一经典结构的场效应晶体管,本身就能通过有效地控制施加在 MOS 上的电压,实现对于晶体管沟道的开启和关断。

于是他们想到:如果将类似结构与发光二极管结合起来,也许能起到相似的调制作用。

只不过这里是对发光二极管的发光特性进行调控,而这将会产生新的调控机制和现象。

随后,他们立即定下器件结构和制备工艺。很快,课题组造出第一个三电极二极管样品,并验证了样品中第三个电极的调控效果。

尽管这一过程仅仅耗时一个月,然而他们也面临着诸多疑问:这个场效应真的存在吗?调制效果是否是由第三电极漏电导致的?这种调制效果的机理是什么?这个结构真的有应用前景吗?

在本次项目的三年间,他们反复质问自己,并通过实验和测试去回答这些问题。

图 | 本项工作的核心成员 Hunain、余华斌、罗远旻同学(来源:孙海定)

期间,Muhammad Hunain Memon 同学为了测试,没能回过自己的祖国巴基斯坦,余华斌同学总是最后一个过年回家,而在过年期间余华斌则把测试接力棒交给 Muhammad Hunain Memon。

最终,他们研制了多达十几轮的器件工艺,在各种波段的发光二极管结构基础上,不断进行基于第三电极的设计和尝试。

经过大量实验和反复确认,证明第三个电极确实对于发光二极管具有调制效应。

并发现这种具备第三电极的二极管结构,能够利用场效应来调控光生电流。当将其用于光电逻辑门电路之时,还有望为实现光计算提供更好的原型基础逻辑单元。

孙海定补充称:“实验中,我的导师刘胜院士针对一些关键技术细节包括器件电极如何构造、材料生长过程、以及器件的单片集成封装等予以指导,并引导我们进行产业化布局包括专利申请等。”

图 | 刘胜院士(左)指导孙海定(来源:孙海定)

最终,相关论文以《三端发光及检测二极管》(A three-terminal light emitting and detecting diode)为题发在 Nature Electronics[1]。

Muhammad Hunain Memon 和余华斌是共同一作,武汉大学刘胜院士和中国科学技术大学孙海定教授担任共同通讯作者。

图 | 相关论文(来源:Nature Electronics)

另据悉,孙海定将自己的实验室起名为“iGaN Laboratory”,也和课题组的初衷和使命紧密相关。

GaN 是氮化镓的化学方程式,孙海定个人认为氮化镓是除了硅以外最完美的半导体材料之一。

而“i”代表的是 imagination 想象力,innovation 创新力,importance 重要性。“这就是我们的 iGaN。YES,We CAN!”孙海定表示。

图 | iGaN 团队,Play Hard,Work Hard!(来源:孙海定)

另据悉,光电芯片及集成作为传统电子集成系统的补充,是孙海定实验室一直以来的深耕方向。

他认为氮化镓是宽禁带半导体领域的“硅材料”,它具备很多硅所不具备的特性比如发光性能,而且可以发从紫外到红外的光。

所以,无论是在光电子领域、还是在传统功率电子领域,氮化镓均能发挥强大的能量。

在光电子领域,氮化镓基蓝光发光二极管的发明改变了人类的照明习惯(替换了传统白炽灯),相关科学家也获得了 2013 年的诺贝尔物理学奖。

但这只是氮化镓光电子产业“发光发热”的开始,未来氮化镓及其相关器件的前景十分明媚。

目前,课题组与氮化镓光电子国内的领军企业也已经展开了相关合作,本次课题也获得了国家级项目的支持(包括国家重点研发计划和国家基金委项目等)。

眼下,他们正在跟业界开展沟通和合作,希望尽快将本次器件和技术加以产业化。

孙海定表示:“我们也希望这项研究能推动下一代高速和多功能光电集成芯片的发展,为光电子、光通讯和光计算等领域带来新的技术解决方案。”

参考资料:

1.Memon, M.H., Yu, H., Luo, Y. et al. A three-terminal light emitting and detecting diode. Nat Electron 7, 279–287 (2024). https://doi.org/10.1038/s41928-024-01142-y

运营/排版:何晨龙

相关问答

试阐述光通信与电通信的异同?

两者用途相同-通信用。电通信是一种技术成熟但面临被淘汰的一种通信技术,但其在未来的通信中还将持续很长(也许10-20年)时间。光通信是目前比较流行的通信...

【说出通信电路中,有哪些调制方式?】作业帮

[最佳回答]调制的种类很多,分类方法也不一致.按调制信号的形式可分为模拟调制和数字调制.用模拟信号调制称为模拟调制;用数据或数字信号调制称为数字调制.按被...

光通讯模块是干什么的?

光通讯模块是一种用于光通讯系统中的设备,主要用于将数字信号转换成光信号,以实现高速、远距离和大容量的数据传输。光通讯模块通常由激光器、光电探测器、调...

光通信中TE、TM波的模式是什么意思具有什么样的物理意义-...

TE是智能电路;TM是终端复用器【21131】光波概述光具有波粒二5261象性,也就是说微观来看,由光4102子组成,具有粒子性,但是1653宏观来看又表现出波动...

硅光子是光通信的未来吗?

自1958年集成电路问世之后,基于硅材料的CMOS集成电路已经在计算、通信、生物医疗、数字娱乐、智能家居等各行业发挥着不可或缺的作用,是现代社会的信息化“大脑...

通信工程主修课程有哪些?-懂得

公共基础课主要有:高等数学、大学物理、复变函数、概率、计算机基础、C语言。专业课主要有:信号与系统、电磁场与电磁波、、高频电子、模拟电路、数...

internet是由网络路由器和通信线路连接的?

是的,Internet是由联网的网络路由器和通信线路连接而成的。这些路由器和线路连接了世界各地的电脑和设备,使得人们可以通过互联网进行信息交流和数据传输。通...

请问光纤收发器中的收发原理?光转电、电转光具体是怎么转的,有协议吗?如果有,是怎样定义的?

光纤收发器的原理就是将短距离的双绞线电信号和长距离的光信号进行互换的以太网传输媒体转换单元。光纤收发器包括三个基本功能模块:光电介质转换芯片、光信号...

lop在光通信里是什么意思?

在光通信中,LOP是指“光输出功率”(LightOutputPower)。它是衡量光通信设备输出光信号强度的指标。LOP的大小直接影响到光信号的传输距离和质量。通常,光通...

阅读下面的文字,用简洁的语言概括“光纤通信前程似锦”的理...

[最佳回答]此题要求用简洁的语言概括“光纤通信前程似锦”的理由.通读全文可概括为以下几点:①、光纤通信比有线电通信容量大;②、制成光纤所用原料成本低且易...

 中国珠宝论坛  陈嘉琪 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部