电子工程
HOME
电子工程
正文内容
光纤科技深光通讯 2021中国光学十大进展发布:弹性冰单晶微纳光纤
发布时间 : 2024-10-06
作者 : 小编
访问数量 : 23
扫码分享至微信

2021中国光学十大进展发布:弹性冰单晶微纳光纤

澎湃新闻记者 王蕙蓉

5月23日,“2021中国光学十大进展”由中国激光杂志社发布:冰光纤、小型化自由电子激光等10项前沿进展入选基础研究类;六维光信息复用、能降温的光学超材料织物等10项进展入选应用研究类。

此外,魔角激光器、光电智能计算、高效白色发光二极管等19项成果分别荣获基础研究类与应用研究类的提名奖。

2021中国光学十大进展基础研究类(10项)入选名单

1.弹性冰单晶微纳光纤

冰是一种透明易碎的脆性物质,没有弹性、无法弯折,难以像玻璃一样被制成光纤用来传输和调控光。

浙江大学光电学院童利民教授、郭欣副教授团队与合作者们发现生长成单晶微纳光纤的冰,在性能上与玻璃光纤相似,既能够灵活弯曲,又可以低损耗传输光,还可以通过显微拉曼光谱研究冰的相变特性,有望在低温光学导波、光学传感及冰物理研究等方面获得应用。

2.非线性对宇称时间对称性和非厄米拓扑态的调控

如何实现兼有多重特征的人工复杂体系去探索自然界新奇现象,是当今国际上最活跃的前沿课题之一。南开大学陈志刚、许京军课题组及合作团队搭建了同时具有非线性、非厄米和拓扑特性的光子学平台,实现了非线性对宇称时间对称性和非厄米拓扑态的调控,发现了非厄米体系中拓扑态接近奇异点时敏感性和鲁棒性的拮抗效应。

前述创新成果改变了人们对开放拓扑体系中非线性效应的认知,为非厄米拓扑及其相关前沿领域的研究开辟了新方向。

3.激光尾波场加速驱动的台式化自由电子激光首次实现

中科院上海光机所电子加速研究团队等,依托于“新一代超强超短激光综合实验装置”,在国际上首次实现基于激光尾波场加速的极紫外波段的自发辐射放大输出,完成了台式化自由电子激光的原理验证,对于发展小型化、低成本自由电子激光器具有重大意义。

4.在双折射晶体中发现“幽灵”双曲极化激元

华中科技大学张新亮、李培宁教授课题组与国家纳米科学中心戴庆研究员、新加坡国立大学仇成伟教授等国内外团队协同创新,发现传统双折射方解石晶体中存在“面-体”复合的新型“幽灵”双曲极化激元,这种新型激元既受表面束缚,又在晶体内部以倾斜波前传播,表现出世界记录长的各向异性纳米光传输特性和极强光场压缩能力。

前述研究发现为光物理基础研究提供原创新思路,有望在实现纳米尺度光场、热场操控方向上展现出应用潜力。

5.阿秒电子动力学的直接绘图

通过飞秒光场直接度量电子的亚周期动力学特性,可以提供阿秒级时间分辨率,但飞秒激光与超短电子脉冲之间难以实现高精度时空同步。

中科院上海光机所研究团队等通过高对比度飞秒激光与等离子体镜作用,实现了电子与激光时空同步,在实验中观测到阿秒电子脉冲在激光场调制下形成的周期性分布电子束条纹,该工作实现了强场条件下阿秒电子动力学的全光超快时空映射,可直接反馈电子在光场作用下的阿秒动力学特征,为全光阿秒电子学提供了重要技术参考。

6.室温零磁场条件下反铁磁中超快自旋流

超快激光脉冲在反铁磁材料中的非线性光学效应可以诱导产生瞬态磁化,而且不依赖外加磁场。反铁磁的瞬态磁化可以向邻近的重金属层注入超快自旋电流,并由于重金属层的逆自旋霍尔效应转化为高频振荡的电荷电流。

为了验证前述预测,南京大学金飚兵教授与吴镝教授课题组等合作,通过探测激光诱导的反铁磁/重金属结构的太赫兹波信号,实验发现了室温零磁场条件下反铁磁的超快自旋泵浦过程。反铁磁超快自旋泵浦的发现为进一步实现高速、稳定和高集成度的反铁磁自旋电子器件提供了新的方法。

7.利用飞秒激光操控量子材料电子维度

超快激光与量子材料相互作用产生奇异量子态是目前国际上正在探索的量子材料操控研究前沿。

上海交通大学张文涛研究组与张杰、向导团队等合作,提出利用飞秒激光对量子材料电子维度的操控机制,并利用自主研制的高分辨时间分辨角分辨光电子能谱仪和超快电子衍射装置,在三维量子材料中实现二维长程有序电子态,并在所形成的二维电子态中发现存在奇异电子态,可能是一种光致超导迹象。该发现为二维电子态研究提供了新平台。

8.大模间色散下的时空锁模被证实

清华大学精密仪器系杨昌喜课题组与北京邮电大学电子工程学院肖晓晟课题组合作,在时空锁模激光器方向取得了新进展。

合作团队证实了大模间色散下可以实现时空锁模,揭示了其锁模机理;并观察到锁模输出在多横模与近单横模之间转换。该工作在科学上扩展了对三维光学系统中复杂非线性时空动力学的理解,在工程上极大拓宽了时空锁模激光器的设计可能性。

9.近红外生物成像窗口的高效宽带消色差超构透镜

“超构表面"作为一种超薄的微纳结构,为解决设备小型化、集成化的需求提供了一个很好的平台。

哈尔滨工业大学(深圳)肖淑敏微纳光子学实验室借助由C4对称的基本单元构成的二氧化钛超构表面并凭借先进的微纳加工手段,设计并制备出了工作于近红外成像窗口的高效率宽带消色差超构透镜。首次将二氧化钛微纳制备的深宽比提高到37.5,是先前记录的2.5倍。实验结果表明该消色差超构透镜在650-1000nm(纳米)波段范围内实现消色差成像,平均聚焦效率破纪录地高达88.5%。

同时,通过生物成像实验进行对比,消色差超构透镜成像质量媲美商用物镜,在分辨率方面要优于商用物镜。前述工作对于生物医疗,集成光学以及微纳制备的发展具有重要意义。

10. 非线性黄昆方程与太赫兹巨非线性效应的实现

著名的黄昆方程揭示了横光学声子与光子耦合成为声子极化激元的物理本质,成为极化激元研究的物理开端。

最近,南开大学研究团队及合作者提出并推演了非线性黄昆方程,预言并证实了一种由极性晶体受激声子极化激元介导的光与物质相互作用新机制。在该机制的作用下,太赫兹波段的非线性可以提高五个数量级左右。这一发现为光与物质相互作用、太赫兹科学与技术、极性晶体材料调控、自旋量子比特的光调控等研究提供了一条新的途径。

2021中国光学十大进展应用研究类(10项)入选名单

1. 纳米尺度六维光信息复用

光的波长、偏振、轨道角动量等物理维度可以建立正交的数据通道,利用光的物理维度作为信息的载体可以提高光信息技术的容量和安全性。

暨南大学和上海理工大学等联合研究团队通过携带光子轨道角动量的紧聚焦涡旋光场,揭示了光信息存储介质产生轨道角动量响应的机制,首次在纳米尺度下实现了轨道角动量、偏振、波长及三维空间上的六维光信息复用存储技术。

前述技术不仅可以促进与轨道角动量相关的基础科学研究,而且有望为下一代大容量光信息通讯、存储技术提供新思路。

2.基于形态学分级结构设计的辐射降温光学超材料织物

华中科技大学陶光明团队与多家科研和产业单位联合创新,基于形态学分级设计研发无源降温光学超材料织物,实现了太阳辐射波段92.4%的反射率以及中红外波段94.5%的发射率。

光学超材料织物具有可产业级宏量制造的优势,与我国完备的化纤纺织行业体系相兼容。在户外暴晒环境的降温测试中,相较于商用棉织物,光学超材料织物可为人体降温近5摄氏度;在模拟汽车测试中,光学超材料织物可为汽车内部降温近30摄氏度。

前述研究实现了跨领域多学科协同创新,代表了智能织物在光学和热管理领域取得的重要进展,启示并推动传统工业的创新与发展。3.基于吸收型存储器的多模式量子中继

量子中继可以克服信道损耗实现远程的量子通信。已有的量子中继都是基于发射型量子存储器构建的,其物理系统单一导致通讯速率受限。

中国科学技术大学李传锋、周宗权研究团队利用固态量子存储器和外置纠缠光源,成功演示量子中继的基本链路,并展现了多模式复用在量子中继中的加速作用,为实用化高速量子网络的构建打下了坚实的基础。

4.相干能量调制的自放大机制

如何实现全相干、高重复频率运行的自由电子激光已经成为自由电子激光发展的关键挑战之一。

中国科学院上海高等研究院和中国科学院上海应用物理研究所自由电子激光团队提出了一种相干能量调制的自放大机制,并且基于软X射线自由电子激光装置完成了实验验证。利用自放大机制,成功实现了两级级联HGHG(软X射线自由电子激光装置)在种子激光的30次谐波放大出光。这是目前国际上“工作谐波/激光调制” 最高的外种子自由电子激光放大结果。

前述成果为兆赫兹级重频的外种子自由电子激光铺平了道路,从而有望为高分辨谱学和极紫外光刻等技术带来新的突破。

5.新型范德瓦尔斯单极势垒红外探测器

中科院上海技术物理研究所胡伟达研究员与复旦大学周鹏教授等在新型光电探测器的研究中取得了开创性进展,研制出新型范德瓦尔斯单极势垒红外探测器。该工作创新性地利用原子层堆叠实现了能带局域态操控,构建出范德瓦尔斯单极势垒探测器,突破性地解决了传统材料势垒结构外延生长、晶格失配以及组分能带梯度难以控制的问题。

新型范德瓦尔斯单极势垒结构的提出不仅为红外探测器暗电流过高的瓶颈问题提供了解决思路,也为二维材料步入红外应用领域提供了关键技术方案。

6.片上光力光学频率梳的实现

南京大学现代工程与应用科学学院姜校顺、肖敏团队利用片上光学微腔中的大振幅光力振荡,实现了一种新的光学频率梳(光力光学频率梳)。这种片上微型光学频率梳具有低重复频率、光谱平坦等优点。基于这种光谱平坦的光学频率梳,研究团队还同时实现了宽带的微型微波频率梳。

7.柔性显示织物及其智能集成系统

面向智能电子织物等可穿戴电子设备对显示技术提出的新要求,复旦大学彭慧胜/陈培宁研究团队等提出在高分子复合纤维交织点构建多功能微型发光器件,通过揭示高曲率纤维界面电场分布的独特机制,解决光滑纤维表面活性材料均匀涂覆,以及纤维电极界面稳定性等难题,在国际上率先实现了柔性显示织物及其智能集成系统。

前述智能织物系统将电子器件的制备与织物编织过程有效融合,具有智能、轻质、透气、可洗涤、高柔性等独特优点,将有力推动柔性电子、便携式人机交互系统、柔性健康监测终端等领域的快速发展。

8.溶液中单分子电化学反应的直接成像

单分子水平揭示化学反应的空间位置、路径和动力学是化学研究面临的本质科学问题,这对精准测量提出重大的研究需求。

浙江大学冯建东团队通过时空孤立策略首次实现了对单分子电致化学发光反应的空间成像,并利用空间孤立的分子反应定位信息重构实现了超分辨电致化学发光成像。这种基于化学途径的单分子显微镜技术可与超分辨荧光显微镜实现互补,有望对单分子测量、催化表征和生物成像等领域产生重要影响。

9.线照明调制显微术实现高清成像

华中科技大学、海南大学骆清铭团队发明了线照明调制光学层析成像新原理,同时兼具高分辨率、高通量、高鲁棒性、高背景抑制能力、高灵敏度等优点,填补了相关技术的空白。

团队迭代更新建立了高清荧光显微光学切片断层成像技术,实现高分辨率全脑三维原始数据信噪比110,将全脑光学成像提升到高清晰度的新标准。高清的图像质量,显著提升了后续数据相关环节的工作效率,为攻克脑图谱绘制中的大数据挑战提供了新的切入点。

10.超高分辨Micro-LED显示技术:基于二硫化钼TFT驱动电路集成

Micro LED显示技术是指以自发光的微米量级的LED为发光像素单元,将其组装到驱动面板上形成高密度LED阵列的显示技术。

在国家重点研发计划、自然科学基金等项目的支持下,南京大学新型显示技术研发团队等提出基于二维半导体材料二硫化钼TFT驱动电路集成的、超高分辨氮化镓Micro-LED显示技术方案,开发出晶圆级二维半导体TFT制造工艺,无需巨量转移的低温后端工艺单片异质集成技术,实现了1270 PPI(即每英寸所拥有的像素数量)的高亮度微显示器。

前述成果被发表期刊评价为“突破了传统半导体驱动电路的性能瓶颈,将给未来显示带来颠覆性的产品”。

此外,“2021中国光学十大进展”10项基础研究类提名奖包括:上海光源中心自由电子激光团队实验验证并测量了激光-束流在二极磁场的能量交换;北京大学马仁敏团队实现了基于莫尔超晶格纳米结构的魔角激光器;华南理工大学周博教授、张勤远教授团队等提出基于镱亚晶格的多光子上转换发光;北京大学刘运全教授和龚旗煌院士领导的“极端光学创新研究团队”实现了强激光场中光子轨道自旋耦合的探测和操控;清华大学黄文会、颜立新团队首次实现相对论电子束的高梯度级联太赫兹加速;清华大学戴琼海院士团队提出并构建了大规模可重构光电智能衍射计算处理器;上海交通大学李良教授与意大利米兰-比科卡大学Brovelli Sergio教授团队等合作,实现环境温度处于100℃范围内量子点荧光性能近乎零“热猝灭”,所制备LED电致发光器件也具有优异的抗“热猝灭”性能;北京大学刘开辉课题组等提出并发展了瑞利散射圆二色性技术,实现了单根碳纳米管的完整结构;苏州大学蒋建华、蒲殷教授团队等利用光子系统证实了拓扑体-缺陷对应关系;中国科学技术大学郭光灿院士团队李传锋、柳必恒研究组与南京邮电大学盛宇波等人合作,首次实现11公里远距离量子纠缠纯化。

“2021中国光学十大进展”9项应用研究类提名奖包括:南京理工大学曾海波教授团队和华盛顿大学David Ginger教授团队合作,基于α/δ-CsPbI3同质异相层实现高效白色发光二极管;清华大学团队等研制自适应扫描光场显微镜,打破活体成像壁垒;中科院上海光机所电子加速研究团队等实现GeV(吉电子伏特)量级超低能散的台式化电子加速器;福州大学杨黄浩/陈秋水教授和新加坡国立大学刘小钢教授等实现高分辨X射线发光扩展成像技术;电子科技大学张雅鑫教授团队与中国电子科技集团公司第十三研究所冯志红研究员团队等合作,实现了太赫兹片上可编码超构调控芯片;北京理工大学陈棋教授团队和北京大学周欢萍特聘研究员团队等合作,开发了钙钛矿薄膜加工的关键技术,制备了高质量钙钛矿薄膜及光伏器件;清华大学鲁巍教授团队等实现了从传统直线加速器到激光尾波加速器的高效率外注入级联加速;厦门大学聂立铭教授团队等运用光声成像技术,研制了具有脂质代谢药物,发展了光声技术监测脂肪组织脂质、血红蛋白代谢变化评估肥胖疗效的新方法;黑龙江大学许辉教授团队和新加坡国立大学刘小钢教授团队合作,通过有机小分子表面配位实现了稀土纳米颗粒表面的巨大发光增强。

责任编辑:李跃群

校对:施鋆

科技前沿-水下光通信技术的研究与展望

随着通信技术的快速发展,第五代移动通信(5G)的商业模式大规模普及的同时也使为数不多的频谱带宽几乎消耗殆尽,6G技术的发展势必要寻求新的频谱途径。5G信号因其自身技术的限制和频谱的不足难以满足空天海地一体化的新型全场景覆盖通信网络的需要,6G技术为了弥补这些不足,实现一体化的新型通信网络需要寻找新的无线通信方式来补充传统单一的无线通信模式。

可见光通信相较于现有的通信技术,其最大的优点是频谱无需授权,有着极大的使用自由度。可见光通信拥有高频段的频谱(400~800THz),适用于高速通信技术,且其安全性和保密性有着独特的优势。可见光通信没有传统电磁通信所带来的电磁污染和射频辐射,也不会受到电磁干扰。这些优势使得可见光通信技术成为了近年来各国争相研究的对象。

本文将首先介绍光通信技术的发展,着重介绍水下可见光通信技术的发展以及可见光通信的应用场景与所面对的挑战。然后基于现阶段的研究提出一种成熟的水下可见光通信系统。

一、传统水下通信方式简析

随着人类通信技术的发展,距离空天海地一体化的全方位通信目标的实现也越来越近,但水下通信依旧是现在难以解决的难题。在现有的通信网络中,应用于海洋、水下场景的智能装备主要使用射频信号、声波等无线技术,或使用有线网络进行通信。

⒈水下有线通信

水下有线通信多用于2个大规模水上平台与平台之间,通过铺设水下光缆的方式进行通信,如连接各国的大规模水下光缆网络。有线通信可以保证高速的数据传输,每秒可以传100Gbit以上,但水下光缆本身的安全性很难得到很好的保障且被损坏后很难修补。水下有线通信笨重,成本高,无法满足未来6G时代水下通信的需求。

⒉水下射频信号通信

海水对射频信号有非常强的屏蔽作用,射频信号穿透海水的能力与频率直接相关,只有低频率的射频信号如甚低频(3~30kHz)才能在海水中进行有限的传播。潜艇等水下设备通常使用超低频和甚低频进行有限的通信,通信速率只有300b/s左右。射频信号在水中传输时的趋肤效应,传输距离受限,仅仅适用于近距离的水下通信。因此,无法完成未来远距离、高速率的水下信息传输任务。

⒊水下声波通信

声波较早用于水下探测和水下通信,但由于声波的隐蔽性较弱,主动式声呐设备的声波很容易被对方捕捉而暴露目标,所以水下军事设备不会主动使用声呐进行通信。水声通信的频带带宽被限制在20kHz以内,且由于多径传播会导致延迟增加,产生数据的相互干扰,大大降低了通信速率,传输速率只有几十kb/s。这些严重的延迟和串扰影响显然无法满足日益增长的水下通信需求。

二、UOWC技术发展介绍

由于传统的水下通信技术无法满足未来6G时代高速率、远距离通信的需求,水下可见光通信可以弥补射频通信水下传输距离短的难题,能够克服声波通信速率低、损耗严重等缺点,具有广阔的发展潜力,成为现在水下通信的研究热点。

图1是水下光通信的在未来军事领域的典型应用图,由光来构建新型的立体通信网络。该网络相较于传统信息网络拥有保密性强、稳定性高等优点,不易被敌方破解。海底光缆中继站可以直接与潜艇进行交流沟通,提高了水下潜航设备的通信能力。还可以通过放置浮标作为中继的方式,提高通信距离,达到完善通信网络的目的。

图1 水下光通信典型应用示意图

光波的带宽很宽,由于温度波动、散射、色散等影响,加之光学频段严重吸水和悬浮粒子的强散射,这使得水下光通信仅限于短距离。但水下EM光谱的蓝绿色波长有一个相对较低的衰减光学窗口,早在1966年,UniversityofCalifornia,Santa Barbara的GILBERT、JERNIGAN等人就进行了蓝绿激光水下的偏振、散射和相干特性的相应实验,成功证明了水下蓝绿光通信的可能性。

水下可见光通信通过光源来分类,主要分为水下蓝绿激光通信与基于蓝绿光LED的水下可见光通信。激光器功率大,激光作为水下光通信的媒介可以实现高速率和远距离的传输,但存在相干闪烁等问题,且通信必须要精确对准,实用性差,在实际的应用之中有很大的困难。而基于蓝绿LED的水下光通信,采用非相干光,集照明与通信于一体,无需严格对准,大大增加了水下光通信的便利性和可行性。

⒈水下激光通信的发展

水下激光的发展最先发展于军事领域。20世纪80年代,美国开始进行蓝绿激光对潜战略的研究,并于1981年首次使用机载激光器与位于水下300m深度的潜艇进行了通信实验。2001年美国研制出了激光二极管后,激光通信的发展迈出了飞跃性的一步。2015年,King Abdullah Universityof Scienceand Technology的研究团队使用450nm的激光通过正交频分复用进行调制在5.4m的距离上成功实现了高达4.8Gbit/s的数据速率,且其误码率仅有2.6×10–3,完全满足前向纠错的标准。

2017年,浙江大学光通信实验室使用频谱高效的正品频分复用技术,在10m长度的水下通道实现了9.51Gb/s的基于红绿蓝三色光的聚合数据传输,且误码率完全符合前向纠错的标准。这些都表明如今的水下激光通信确实可以达到极高的通信速率,但传输距离上还有待提升。同样是2017年,复旦大学研究团队提出构建了一种基于绿光激光二极管的水下光通信系统,使用NRZ-OOK对其进行调制,已经实现了34.5m的且速率在2.7Gbps的数据传输,该系统预计最大可传输62.7m,速率也可达1Gbps。

⒉水下蓝绿光LED通信的发展

蓝绿光水下LED的光通信起步相对较晚。2014年度诺贝尔物理学奖表彰了物理学家在发明高效节能的蓝光LED光源方面的贡献。他们在高质量的氮化镓晶体上制造出了蓝光LED,此LED器件具有高的开关响应速度,而正是这种极高的开关响应速度,使得基于LED器件的光通信技术成为可能。在1993年,中村修二成功将蓝光LED的亮度大幅度提升,至此蓝光LED走上了人类的照明的舞台,也开启了蓝绿光水下LED通信的大门。

1995年,国外学者对基于LED的水下光通信进行了理论分析,当时20m的距离可以进行10Mbps的通信,30m的距离可以进行1Mbps的通信。2006年,针对海底观测测试了一种基于LED的通信链路,建立了5m距离的10Mbps通信速率的短程水下光通信链路。后随着调制技术、高速通信信道的研究,美国Yale University研究团队于2010年开发了名为AquaOpticalII的水下光通信系统。该系统使用470nm的大功率LED阵列器件并使用离散脉冲间隔调制,成功实现了50m距离的2.28Mbit/s的通信,是基于LED的水下光通信的突破性的进展。

光通信的光源除了LED光源与激光光源,紫外光通信是一种新型的通信手段,是主要利用紫外光在大气中的散射来进行信息传输的通信模式,具有比现有通信更强的抗干扰能力,且保密性和可靠性好。由于其非视距性,在军事方面潜力巨大,目前的紫外光通信系统主要应用于军事领域。我国的紫外通信起步较晚,尚处于研究阶段,国外于21世纪初已经有相关国家、机构研制,美国的深紫外通信已经达到了实用阶段。

因为紫外光的特殊性在水下通信方面,可以作为水下光通信的补充,增加其保密性,也可在一些必要的短距离上进行可见光通信的弥补。2018年,King Abdullah Universityof Scienceand Technology研究团队利用激光器的375nm紫外光线,验证了在自然环境中的浑浊度等因素对通信的影响,证实了紫外光在自然的水下环境中传播的可能性。

三、面向6G可见光通信系统

现阶段大多数水下光通信的研究多是基于仿真设计、信号处理方面的研究[14],而未形成闭环硬件系统,距离工程实际应用存在差距。本文介绍了一种基于蓝光LED的水下光通信系统。图2为水下光通信系统的示意框图。

图2 水下可见光通信系统框图

该系统为全双工通信系统,由对称的收发端系统构成,主要分为发射和接收2条链路。在发射端,IP摄像头、多路网络传感器等设备作为信源通过交换机汇总至FPGA网口通信模块,经由FPGA跨时钟域处理、编码调制等功能模块,输出至LED发射驱动电路,在这里经过功率器件等其他放大器件的放大,将处理后的信号搭载至LED发射器件两端,后再由光学系统发射出去。调制光信号通过水下信道,接收端将光学系统聚焦的光信号送入微弱信号处理电路,完成光电转换功能。将转换后的电信号送入FPGA信号处理模块,经由解调、解码等处理后,在接收端可以进行音视频、传感器参数等数据的读取。

面向水下高速无线通信的实际需求,高速、大功率氮化镓LED器件是解决水下无线光通信系统“传得远、传得快”瓶颈难题的关键器件。由于氮化镓材料和空气存在大的折射率差异,LED器件的发射光大部分被约束在器件内部。同时,外延氮化物的厚膜效应会使器件内部存在很多波导模式,使发射光耦合进波导模式,最后被损耗掉。为提高器件的出光效率,传统LED通常采用表面粗化技术,在器件表面引入纳米结构,改变界面态,破坏由材料折射率差异造成的全反射,使更多发射光逃逸器件。2009年,飞利浦公司采用激光剥离和电子束曝光技术,减薄外延氮化物薄膜厚度,研制出集成光子晶体结构、厚度700nm、发光波长450nm的垂直结构LED,减少了器件内波导模式的数量,提高了器件的出光效率。

南京邮电大学王永进团队提出亚波长理想LED模型,图3是器件的示意图。根据布拉格方程,当传输波长远远大于器件厚度时,波长效应出现,光线或其他任何东西都会直接无损地通过材料。因此,当LED器件中心发光波长大于器件厚度时,器件内部的波导模式能够被抑制消除,集成底部金属电极反光镜,发射光逸出器件,实现接近完美的LED出光结构。由于器件厚度大幅减小,电阻效应出现,降低了电子传输产生的热效应,减小了生产缺陷引起的光、电损耗,提升了器件的注入效率和响应速率。

图3 亚波长理想蓝光LED器件示意图

此外,亚波长理想LED能够抑制侧向光传输,降低片内光电子集成芯片带来的光串扰。他们通过金属键合工艺,将原始晶圆和硅晶圆键合在一起,通过抛光减薄技术,去除原始晶圆衬底,随后通过无掩膜刻蚀技术进行外延氮化物薄膜减薄,研制出厚度225nm、发光波长411nm的垂直结构LED,实验证明了亚波长理想LED模型。在此工作的基础上,研制出出光面积1mm×1mm的垂直结构LED器件,器件厚度580nm,发光中心波长427.8nm,在比特加载DMT调制下实现通信速率608Mbps的无线光通信,为研制面向水下无线光通信的大功率、高效率、高响应LED器件提供了一条可行的技术路线。

图4(a)为研制的水下无线光通信系统实物图。系统采用蓝光LED作为光发射器件,器件的发光谱如图4(b)所示,中心发光波长为450nm,半高宽为22nm。

图4 水下蓝光通信系统

图5为该水下蓝光通信系统的水下实验图。该系统在水下环境光传输损耗不大于0.4dB/m的情况下,水下最大通信距离不小于50m,单向通信速率不小于2Mbps,双向信息交换速率不低于4Mbps,支持音视频和多路传感数据的水下双向无线蓝光通信。

图5 水下蓝光通信系统水下实验图

本文针对水下可见光通信研制出成熟的硬件系统,并且在可靠性、实用性等方面都得到了印证。然而,水下光通信依然面临着诸多待解决的难题,例如高阶调制方式,更高调制速率、更高出光效率的光源的应用等。未来水下光通信的发展将主要从信道、光源、调制解调等方面进行发展,以确保水下光通信能够实现高速、远距离的通信。

在调制方式与信号处理算法等方面,复旦大学迟楠教授研究团队,提出了AI赋能的可见光通信技术和多种调制方式,将信号数据处理与AI技术相结合并加以新型的适配调制方式,大大改进了发射端和接收端的数据信号处理能力,为未来实际应用场景下复杂的高速水下光通信设备的调制解调提供理论支撑。

另一方面,虽然使用激光作为光源能够提供更长的通信距离,但通信条件苛刻,不仅需要严格对准,海水的湍流、紊流等都会造成光斑偏移,从而造成通信链路不稳定、断链等影响。而LED作为光源,发光性能上远不及激光,在LED方面,南京邮电大学团队提出了亚波长理想结构的LED器件,提升器件的出光效率、调制速率,是LED光源的突破性进展。未来的LED光源在亚波长垂直结构LED的基础上提升器件发光性能,将会是光源领域的重点研究方向。

未来的6G时代,水下光通信与声波、射频信号、有线通信等进行结合,一定能克服现有的信道不稳定,传播速率较低的问题,成为水下通信的最优解。未水下光通信技术在海上可以将水上船舶设备、水下设备与水下的油井、风力发电机等大型设备相连接,构筑海上一体化的全光通信网络,实现在海上环境的高速通信。同时与陆地上面的通信进行融合,实现有光即可通信,构建一种更为自由、覆盖更广的通信网络。

相关问答

光纤通信拓展知识?

光纤基本知识第一部分光纤理论与光纤结构一、光及其特性:1、光是一种电磁波可见光部分波长范围是:390~760nm(毫微米)。大于760nm部分是红外光,小于390nm部...

光电信息就业情况怎么样?前景如何?申请方

一般大家就业的话都是去科研、教学、光纤通信企业等,主要光信息是边缘性交叉学科,是机,电,光结合的产物,所以就业方面就感觉有点窄啊。毕业后理论上...

求医药板块和高科技板块龙头股或比较有发展潜力的股...-汇...

[回答]股票好坏怎么判定?1、看股票背后上市公司的业绩、股价净值是否被高估、股价上涨的同时成交量是否跟得上、股票K线图走势等等。还可以从股...1、看...

光纤是如何连接起来的?

光纤是怎么连接的,这应该是从应用层面去理解,光纤详细的资料制造,就不多介绍了,大家知道光纤是一束玻璃,经过光学原理,就是光的投射和反射作用把电信号转成...光...

各板块龙头股有哪些?各板块龙头股一览-爱笑的风雨星辰的回...

(1).汽车:长安汽车、中国重2113汽、一汽5261夏利、一汽轿车、上海汽车、江铃汽4102车中国铝1653业、山东黄金、中金黄金、驰宏锌锗、宝钛股份、宏达...

移动地下光缆深度60厘米不够标准,不小心被挖断了。该怎么办...

[回答]【法律意见】不小心挖断国防电缆线属于破坏军事通信,会处三年以下有期徒刑、拘役或者管制。【法律依据】《中华人民共和国刑法》第三百六十九条规定...

方正科技属于什么板块股票?-汇财吧专业问答

[回答]方正科技代码为600601属于上证小盘股,不属于创业板。300开头的为创业板。方正科技股票是不错的。它属于沪市股票、上海板块、科技板块、计算机板块...

谁能帮助我!高功率光纤哪家靠谱?大侠们,求解

[回答]高功率光纤广州景颐光电科技有限公司是一家研发、生产、销售光电,热工类仪器仪表的高科技企业。公司现拥有的产品有:光学透过率测量仪,光谱仪,积分...

谁是海洋通信工程专业毕业的?找对口的工作容易吗?-mmm萌萌...

在我们学校16级是第一级开海洋通信的年级,到现在还没毕业生。据说比传统的通信前景要好。查询教务系统的话比通信多了海洋遥感海洋光电的课程。到18...

全世界的网络真是通过海底光缆联通的么?如何铺设的?

你说对了一半,我们互联网用的光缆有陆地光缆和海底光缆,陆地光缆就是我们常常在电线杆看到的那个(不是最顶上的,是下面一点的那一堆线)。海底光缆顾名思义就是...

 国债回购  安监局办电工证 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部