揭秘光波导核心原理,了解AR眼镜背后的挑战(下)
在上一篇文章中我们介绍了光波导的概念及与其他AR眼镜光学方案的比较,然后重点分析了几何光波导 (Geometric Waveguide) 的工作原理。
这篇文章,我们重点分析下光波导的另一个类群 – 衍射光波导 (Diffractive Waveguide), AR眼镜想要具备普通眼镜的外观,真正走向消费市场,衍射光波导,具体说表面浮雕光栅方案是目前的不二之选。
目前诸如微软Hololens一代和二代、Magic Leap One等多家明星产品,使用并用消费级产品证明了衍射光波导的可量产性,Rokid最新发布的Rokid Vision AR眼镜也是采用双目衍射光波导的方案。制造衍射光波导所需要精度和速度都可靠的电子束曝光和纳米压印的仪器都价格不菲,并且需要放置在专业的超净间里,有条件建立该产线的厂商屈指可数。
下面,就让我们通过这篇文章,了解下对于AR眼镜而言,神秘又重要的衍射光波导技术。
图 1. 光波导的种类: (a) 几何式光波导和“半透半反”镜面阵列的原理示意图, (b) 衍射式光波导和表面浮雕光栅的原理示意图, (c) 衍射式光波导和全息体光栅的原理示意图。本图改编自https://hackernoon.com/fundamentals-of-display-technologies-for-augmented-and-virtual-reality-c88e4b9b0895
本文中我们将着重讲解衍射光波导的工作原理,与几何光波导相比的优缺点,以及衍射光波导使用的两种主流光栅 – “表面浮雕光栅(SRG)”和”全息体光栅(VHG)”。
一、衍射光波导的核心 – 衍射光栅
要想光机产生的虚像被光波导传递到人眼,需要有一个光耦合入(couple-in)和耦合出(couple-out)波导的过程,在几何光波导里这两个过程都是由传统光学元器件比如棱镜、“半透半反”镜面阵列完成的,过程简单易懂,但是具有体积和量产工艺上的挑战。在衍射光波导里,传统的光学结构被平面的衍射光栅(Diffractive Grating)取代,它的产生和流行得益于光学元件从毫米级别到微纳米级别,从“立体”转向“平面”的技术进步趋势。
那么衍射光栅是什么呢?简单来说,它是一个具有周期结构的光学元件,这个周期可以是材料表面浮雕出来的高峰和低谷 (图1b),也可以是全息技术在材料内部曝光形成的“明暗干涉条纹”(图1c),但归根结底都是在材料中引起了一个折射率n (refractive index)的周期性变化。
这个周期一般是微纳米级别的,与可见光波长(~450-700nm)一个量级,才能对光线产生有效的操控。
衍射光栅的“分光”体现在两个维度,如图2中所示,假设入射光是单一波长的绿光,它会被衍射光栅分成若干个衍射级(diffraction order),每一个衍射级沿着不同的方向继续传播下去,包括反射式衍射(R0, R±1, R±2,…)和透射式衍射(T0, T±1, T±2,…)的光线,每一个衍射级对应的衍射角度(θm, m=±1, ±2, …)由光线的入射角(θ)和光栅的周期(Λ)决定,通过设计光栅的其他参数(材料折射率n、光栅形状、厚度、占空比等)可以将某一衍射级(即某一方向)的衍射效率优化到最高,从而使大部分光在衍射后主要沿这一方向传播。
这就起到了与传统光学器件类似的改变光线传播方向的作用,但是它所有的操作又都是在平面上通过微纳米结构实现的,所以非常节省空间,自由度也比传统光学器件大很多。
对于光波导而言,这一衍射角度还需要满足玻璃基底里的全反射条件才能在波导中传播,这在上一篇中有分析过。
在将入射光分成不同衍射级的基础上,衍射光栅的另一“分光”维度体现在色散,即对同一光栅周期来说,不同波长的衍射角度(θm)也不同。如图2所示,假设入射光是白光,那么波长越长的光线衍射角度越大,即图示的衍射角红光(R)>绿光(G)>蓝光(B),这一色散作用在反射衍射和透射衍射中都会体现出来。
这个现象是不是看上去有点熟悉?我想大家小时候都玩过棱镜,太阳光(白光)通过它之后也会被分光成“彩虹”,只不过它的分光原理是光的折射作用而非衍射作用。图2(c)将衍射光栅的分光现象(包括多衍射级和色散作用)与棱镜的分光色散做了直观的对比,可以看到衍射光栅将光分成不同衍射级别的同时,每一个级别又都有色散现象,比分光棱镜要复杂很多。
图 2. (a) 表面浮雕光栅的部分衍射级和色散示意图, (b) 全息体光栅的部分衍射级和色散示意图, (c) 衍射光栅与分光棱镜的对比示意图。
二、衍射光波导的工作原理
了解了衍射光栅的工作原理之后,我们来看一下它如何在光波导中工作的。
如果我们回忆上一篇文章中提到的,在几何光波导中利用“半透半反”镜面阵列可以实现一维扩瞳,如果我们将这个概念转移到衍射光波导里,如图3(a)所示,可以简单地用入射光栅来将光耦合入波导,然后用出射光栅代替镜面阵列。即像蛇一样在波导里面“游走”的全反射光线在每次遇到玻璃基底表面的光栅的时候就有一部分光通过衍射释放出来进入眼睛,剩下的一部分光继续在波导中传播直到下一次打到波导表面的光栅上,不难理解一维扩瞳即可以实现了。
但是人们并不满足于在一个方向上(即沿双眼瞳距的X方向)增大动眼框,既然光栅结构比传统光学器件能够在更大的自由度上操控光的特性,那么我们何不在另一个方向上(即沿鼻梁的Y方向)也实现扩瞳呢,这样不只可以使得AR眼镜能够接受更大范围的瞳距,也可以对不同脸型、鼻梁高度的人群更有兼容性。
用衍射光栅实现二维扩瞳的概念十几年前由位于芬兰的Nokia研究中心的科学家Dr. Tapani Levola提出,并且给业内贡献了许多有价值的论文,主要使用的是表面浮雕光栅(SRG)。
后来这部分IP分别被Microsoft和Vuzix购买或者获得使用执照(license),所以现在的Hololens I和Vuzix Blade用的都是类似的光栅结构和排布。如图3(b)所示,另一个全息体光栅(VHG)的代表光学公司Digilens也是用类似的三区域光栅排布来实现二维扩瞳。可以看到当入射光栅(input grating)将光耦合入波导后,会进入一个转折光栅(fold/turn grating)的区域,这个区域内的光栅沟壑方向与入射光栅呈一定角度,为了方便理解我们假定它是45度角,那么它就像一个45度的镜子一样将X方向打来的光反射一下变成沿Y方向传播。
并且在这个转向的过程中,由于全反射行进的光线会与转折光栅相遇好几次,每一次都将一部分光转90度,另一部分光继续横向前进,这就实现了类似图3(a)的在X方向的一维扩瞳,只不过扩瞳后的光并没有耦合出波导,而是继续沿Y方向前进进入第三个光栅区域 – 出射光栅 (output grating)。
出射光栅的结构与入射光栅类似,只不过面积要大很多而且光栅沟壑的方向与入射光栅垂直,因为它承担着在Y方向扩瞳的重任,过程与图3(a)类似,只不过它接受的是多个光束而非一个。我们假设单瞳(pupil)的入射光在经过转折光栅后扩展成M x 1个瞳(即一个X方向的一维阵列),那么在经过出射光栅后就被扩展成了一个M x N的二维矩阵,其中N是光线在出射光栅区域全反射的次数即扩瞳的个数。
用转折光栅实现二维扩瞳是一个比较直观也是目前市面上主流产品如Hololens I, Vuzix Blade, Magic Leap One, Digilens等采取的方式,其中三个光栅区域的面积、形态、排布方式可以根据眼镜的光学参数要求和外形设计来灵活调节。
另外一种实现二维扩瞳的方式是直接使用二维光栅,即光栅在至少两个方向上都有周期,比较直观来讲就是单向“沟壑”变为柱状阵列。来自英国的衍射光波导公司WaveOptics就是采用的这种结构,如图3(c)所示,从入射光栅(区域1)耦合进波导的光直接进入区域3,这个区域的二维柱状阵列可以同时将光线在X和Y两个方向实现扩束,并且一边传播一边将一部分光耦合出来进入人眼。
可想而知这个二维光栅的设计是非常复杂的,因为在兼顾多个传播方向的耦合效率同时还要平衡每个出瞳的出光均匀性。
它的好处是只有两个光栅区域,减少了光在传播中的损耗,并且由于没有了转折光栅,出射光栅就可以在有限的玻璃镜片上占据更大的面积,从而增大有效动眼框的范围。
WaveOptics 40度FOV的模组动眼框可以达到19 x 15 mm,是目前市面上的同类产品中最大的。
图 3. 衍射光波导中的扩瞳技术: (a) 一维扩瞳, (b) 利用转折光栅实现的二维扩瞳, (c) 利用二维光栅实现的二维扩瞳。
三、衍射光波导的优缺点分析
衍射光波导技术与几何光波导相比主要优势在于光栅在设计和生产上的灵活性,不论是利用传统半导体微纳米制造生产工艺的表面浮雕光栅,还是利用全息干涉技术制成的体光栅,都是在玻璃基底平面上加镀一层薄膜然后加工,不需要像几何光波导中的玻璃切片和粘合工艺,可量产性和良率要高很多。
另外,利用转折光栅或者二维光栅可以实现二维扩瞳,使得动眼框在鼻梁方向也能覆盖更多不同脸型的人群,给人体工程学设计和优化用户体验留了更大的容差空间。由于衍射波导在Y方向上也实现了扩瞳,使得光机在Y方向的尺寸也比几何光波导的光机减小了。
在几何光波导中,需要在镜面阵列中的每个镜面上镀不同R/T比的多层膜,来实现每个出瞳的出光均匀,需要非常繁冗的多步工艺。而对于衍射光栅来说,只需要改变光栅的设计参数例如占空比、光栅形状等,将最终结构编辑到光刻机、电子束曝光机、或者全息干涉的掩膜(mask)里,便可一步“写”到光栅薄膜上,来实现多个出瞳的出光均匀。
然而,衍射光波导技术也有它的不足,主要来源于衍射元件本身对于角度和颜色的高度选择性,这在图2中有所解释。
首先需要在多个衍射级别的情况下优化某一个方向上的衍射效率从而降低光在其他衍射方向上的损耗。
拿表面浮雕光栅的入射光栅来说,图3(a)中对称的矩形光栅结构衍射到左边的光并不会被收集传播到眼睛里,相当于浪费了一半的光。因此一般需要采用如图1(b)中的倾斜光栅(slanted grating)或者三角形的闪耀光栅(blazed grating),使得往眼睛方向衍射的光耦合效率达到最高。这种倾斜的表面浮雕光栅在生产工艺上比传统矩形光栅要求更高。
然后就是如何对付色散问题,如图2中提到的,同一个衍射光栅对于不同的波长会对应不同的衍射角度。
由于来自光机的是红绿蓝(RGB)三色,每个颜色包含不同的波长波段。当它们通过入射光栅发生衍射后,如图4(a)所示,假设我们优化的是+1级的衍射光即T+1, 对于不同的波长衍射角θ+1T就会不同,即R>G>B。
由于这个角度的不同,光每完成一次全反射所经历的路程长度也会不同,红色全反射的次数少于绿色,而蓝色全反射次数最多。由于这个差异,图4(a)中的光在最终遇到出射光栅时(请看指向眼镜的箭头),蓝色会被耦合出3次(即出瞳扩成3个),绿色2次,红色1次,这会导致眼睛移动到动眼框的不同位置看到的RGB色彩比例是不均匀的。
另外,即使同一颜色的衍射效率也会随着入射角度的不同而浮动,这就导致在整个视场角(FOV)范围内红绿蓝三色光的分布比例也会不同,即出现所谓的“彩虹效应”。
为了改善色散问题,可以如图4(b)所示将红绿蓝三色分别耦合到三层波导里面,每一层的衍射光栅都只针对某一个颜色而优化,从而可以改善最终在出瞳位置的颜色均匀性,减小彩虹效应。
但是由于RGB LED每个颜色内部也不是单一的波长,而是覆盖了一小段波长段,仍然会有轻微的彩虹效应存在,这是衍射光栅的物理特性导致的,色彩均匀性问题只能通过设计不断优化但不能完全消除。
最近问世的Hololens II 则将LED光源换成了光谱很窄的激光光源,会极大地减小彩虹效应。为了使得眼镜片更轻薄,市面上大部分产品将红绿色(RG)并入一层波导传播。也有勇于探索的厂商使用一些新型光栅设计将RGB三色都并入一层波导,例如波导公司Dispelex,但目前全彩的demo只有30度左右FOV。
总结一下,衍射这个物理过程本身对于角度和波长的选择性导致了色散问题的存在,主要表现为FOV和动眼框内的颜色不均匀即“彩虹效应”。光栅设计优化过程中,对于所覆盖颜色波段和入射角(即FOV)范围很难兼顾,如何用一层光栅作用于RGB三色并且能实现最大的FOV是业内面临的挑战。
图 4. 衍射光波导中的色散问题: (a) 单层光波导和光栅会引起出射光的“彩虹效应”, (b) 多层光波导和光栅提高了出射光的颜色均匀性。
四、衍射光波导的分类
目前表面浮雕光栅(SRG)占市场上衍射光波导AR眼镜产品的大多数,得益于传统光通信行业中设计和制造的技术积累。
它的设计门槛比传统光学要高一些,主要在于衍射光栅由于结构进入微纳米量级,需要用到物理光学的仿真工具,然后光进入波导后的光线追踪(ray tracing)部分又需要和传统的几何光学仿真工具结合起来。
它的制造过程先是通过传统半导体的微纳米加工工艺(Micro/Nano-fabrication),在硅基底上通过电子束曝光(Electron Beam Lithography)和离子刻蚀(Ion Beam Etching)制成光栅的压印模具(Master Stamp),这个模具可以通过纳米压印技术(Nanoimprint Lithography)压印出成千上万个光栅。
纳米压印需要先在玻璃基底(即波导片)上均匀涂上一层有机树脂(resin),然后拿压印模具盖下来,过程很像“权力游戏”里古时候寄信时用的封蜡戳,只不过这里我们需要用紫外线照射使resin固化,固化后再把“戳”提起来,波导上的衍射光栅就形成啦。
这种resin一般是在可见光波段透明度很高的材料,而且也需要与波导玻璃类似的高折射率指数(index)。表面浮雕光栅已经被Microsoft, Vuzix, Magic Leap等产品的问世证明了加工技术的高量产性,只不过精度和速度都可靠的电子束曝光和纳米压印的仪器都价格不菲,并且需要放置在专业的超净间里,导致国内有条件建立该产线的厂商屈指可数。
在做全息体光栅(VHG)波导方案的厂家比较少,包括十年前就为美国军工做AR头盔的Digilens,曾经出过单色AR眼镜的Sony,还有由于被苹果收购而变得很神秘的Akonia,还有一些专攻体光栅设计和制造的厂家。
他们所用的材料一般都是自家的配方,基本是感光树脂(Photopolymer)和液晶(Liquid Crystal)或者两者混合。制作过程也是先将一层有机薄膜涂在玻璃基底上,然后通过两个激光光束产生干涉条纹对薄膜进行曝光,明暗干涉条纹会引起材料不同的曝光特性,导致薄膜内出现了折射率差(Δn, index contrast),即生成了衍射光栅必备的周期性。
由于体光栅由于受到可利用材料的限制,能够实现的Δn有限,导致它目前在FOV、光效率、清晰度等方面都还未达到与表面浮雕光栅同等的水平。但是由于它在设计壁垒、工艺难度和制造成本上都有一定优势,业内对这个方向的探索从未停歇。
五、总结
好了,说了这么多,让我们比较下光波导的各个技术方案来看看究竟花落谁家,为了方便大家横向比较我们总结了一个比较详细的表格。
其中几何光波导基于传统光学的设计理念和制造工艺,并且实现了一维扩瞳。它的龙头老大是以色列公司Lumus,目前demo了55度FOV,成像亮度和质量都非常好。但遗憾的是几何光波导的制造工艺非常繁冗,导致最终的良率堪忧,由于市面上还没有出现达到消费级别的AR眼镜产品,它的可量产性还是一个未知数。
衍射光波导得益于微纳米结构和“平面光学”的技术发展,能够实现二维扩瞳。其中主流的表面浮雕光栅被多家明星公司使用并用消费级产品证明了它的可量产性,其中Hololens II达到了52度FOV。
另外一种全息体光栅也在平行发展中,如果能够在材料上突破瓶颈以提升光学参数,未来量产也很有希望。我们认为,衍射光波导具体说表面浮雕光栅方案是目前AR眼镜走向消费市场的不二之选。
但是由于衍射光栅设计门槛高和“彩虹效应”的存在,做出理想的AR眼镜仍然任重道远,需要业内各个产业链的共同努力。
雷锋网
作者介绍:李琨,浙江大学光电系本科毕业,美国加州伯克利大学电子工程系博士毕业,主要研究方向包括光学成像系统、光电子器件、半导体激光器和纳米技术等。现就职位于美国旧金山湾区的Rokid R-lab,担任光学研究科学家和多个项目负责人。
越过“牛顿的棱镜”纳米级光谱仪问世
剑桥大学论文合作者合影 项目组供图
■见习记者 程唯珈
买了青菜,担心有农药?拿出手机,打开摄像头,让微型光谱仪先帮你做个CT。此外,光谱仪还能检测出食物的新鲜程度、蛋白质含量、糖分含量等。这些看似“科幻”的操作,在不久的将来都可能变成现实。
这一切的背后,都离不开一根由半导体纳米线组成的微型光谱仪。其大小比人类头发千分之一还细,说它是世界上最小的光谱仪也毫不为过。
“它可被集成到手机上,只要用手机一扫就可以检测出食物的新鲜度、食品药品的成分,还可用于艺术品的鉴定。“该光谱仪的发明者之一、论文第一作者、剑桥大学石墨烯中心博士后杨宗银将一根纤细的带隙渐变的硫硒化镉纳米线放置显微镜下。在蓝光的激发下,散发着彩虹色的荧光。
该成果日前发表于《科学》。
牛顿的棱镜
17世纪,牛顿发现太阳光通过棱镜的折射后可观察到彩色,这个色散实验为光谱仪的诞生播下了种子。通过对光谱的测量,人们可获知大到几百万光年外的星系活动、小到纳米尺度的分子结构,还可以用来分析物体中的化学成分。
比如我们日常饮用的牛奶,肉眼直接观察很难区别个中差异。但是通过对牛奶进行光谱分析,牛奶里的成分便一目了然。
“每个物质都会有相应的光谱信号,如水、乙醇、糖的吸收光谱,荧光、拉曼光谱都不一样。据此可以确定牛奶的成分、糖分高低、含水量多少以及是否含有三聚氰胺等。” 论文作者之一、上海理工大学副教授谷付星告诉《中国科学报》,借助光谱仪,人们可以快速地进行食物成分的分析。
尽管目前光谱仪技术已经成熟,但光谱仪的微型化,遇到了门槛。
“普通光谱仪包含色散元件,这是个很核心的器件。”谷付星介绍,科研人员一般用棱镜或者光栅对入射光进行分光色散,然后在后方放置一个光探测器阵列用于测量不同谱线的强度信息。但是,由于使用了棱镜光栅等分光元件,导致光谱仪体积庞大。而减小分光和探测元件的尺寸又将导致光谱仪的光谱分辨率、灵敏度及动态检测范围显著下降。
有没有一种办法可以兼顾仪器的尺寸和精度?多年来,国内外科研人员展开了诸多研究。包括且不局限于利用高度集成的微电子芯片处理信号、使用精密加工技术使器件空间体积更小等手段,但均未突破色散如棱镜和光栅等这个核心器件的限制。
谁能想到,在牛顿实验四百多年后的今天,来自中国、英国和芬兰的科研团队另辟蹊径,仅仅采用了一根半导体纳米线,就成功攻克了这个技术难题。
纳米线牵起兄弟情
说起这神奇的纳米线,还得从8年前说起。
早在2011年,同在浙江大学求学的谷付星和杨宗银共同发明了在单根纳米线上调控带隙的技术。用谷付星的话形容,“得到的纳米线在荧光显微镜下观察起来就像一道彩虹”。
“这很容易让人联想到牛顿三棱镜实验中的七彩色。”杨宗银告诉《中国科学报》,沿着这一思路,这对师兄弟开始探索用纳米线替代三棱镜,将传统光学器件的尺寸缩小到纳米尺度。
然而,想要实现光谱信号的收集和分析并非易事。尽管理论上可以在这种纳米线周边做电极阵列来实现光谱检测,但是这需要精密的微纳加工。
2012年,谷付星从浙江大学毕业,前赴上海理工大学成为“青椒”。由于实验室刚起步,无法满足光谱实验的条件,于是他一边研究氢气传感,一边将希望寄托于前往剑桥大学读博的杨宗银。
而在大洋彼岸,杨宗银的日子也不好过。他心仪的纳米线光谱仪课题和导师的研究方向并不匹配,想要完成实验测试需要极其艰苦的努力。
“从我2014年来剑桥读博,直至2017年一共做了大概150个光谱仪器件,结果仍然不理想,这段时间幸亏有妻子的支持。随着对器件和算法的一次次优化,直到2018年8月,在一个周六晚上,我在实验室测量到了信号,有点不敢相信自己的眼睛,验证了多次都和商用光谱仪测量结果相符,那一刻真是百感交集。”回首这段经历,杨宗银至今记忆犹新。
杨宗银介绍,实验人员用一种带隙渐变的特殊纳米线替代了传统光谱仪中的分光和探测元件,采用和制作电脑芯片类似的工艺在这种纳米线上加工出了光探测器阵列。他们利用各个探测器对不同颜色光具有不同响应的特性,通过逆问题的求解,从响应函数方程组中重构出所需要测量的光谱信息。
更值得一提的是,这样制造出的微型光谱仪具有便携、易推广的特性,非常适用于可穿戴电子设备等新兴领域,具有广阔的应用前景。
光谱检测走进大众生活
可是这仅有头发丝千分之一大小的微型光谱仪,甚至肉眼都无法看清楚,老百姓又该怎样使用呢?
面对疑惑,杨宗银解释说,纳米线光谱仪可以做成光谱芯片,与广泛使用的手机摄像系统具有良好的兼容性,继而设计成紧凑式光谱仪模块,使手机具备光谱探测能力,把强大的光谱分析技术从实验室搬到手掌上。今后,只需要掏出手机给物体拍个照,就能获得该物体的光谱信息。
获取的这些信息数据,通过手机APP软件,将需要检测的信息和对应数据库中的数据进行对比分析,人们就能直观地看出相关成分的含量在怎样的范围。
“这跟我们在医院得到的验血报告类似。不过,要做到这一步,还需要进行后续的研发。”杨宗银说。
谷付星介绍,通过后续开发,待纳米机器人技术成熟、供电和信号传输的问题解决之后,这种微型光谱仪除了应用于电子设备,还有望植入人体,用于实时监测人体健康状况,为癌症等疾病检测提供一种新的检测治疗方法。
对于检测人体健康状况这个功能,比如血糖指标等,谷付星表示:“涉及人体的健康实验,会非常慎重,我们的产品要确保检测结果的正确性,也要符合国家医疗卫生保健的相关标准,研发的过程会比较漫长。”
他们希望等到技术成熟时,这样的微型光谱仪,老百姓只需要几百块钱就能轻松拥有。那时,光谱检测技术将真正走进大众的生活。
相关问答
光栅光谱和棱镜光谱有哪些区别_作业帮
[最佳回答](ZT)分光原理不同而已.相同之处就是大家都是以将入射光束展开为目的来做一种是衍射分光,不考虑高阶衍射的话,理想波长分布按光栅方程来排列,另一种...
【光栅光谱与棱镜光谱有什么不同?】作业帮
[最佳回答]光栅光谱是衍射(干涉)光谱,光谱是间断的;棱镜是折射光谱,光谱是均匀的;
光栅光谱与棱镜光谱有什么不同?
道具不同。(1)光栅光谱:光栅光谱的道具为由大量等宽等间距的平行狭缝构成的光学器件。(2)棱镜光谱:棱镜光谱的道具为由两两相交但彼此均不平行的平面围成的...
光栅光谱与棱镜光谱有什么区别?
光栅光谱与棱镜光谱区别为:道具不同、谱线排列不同、波长分布顺序不同。一、道具不同1、光栅光谱:光栅光谱的道具为由大量等宽等间距的平行狭缝构成的光学器...
【棱镜光谱仪和光栅光谱仪的光谱有何不同?】作业帮
[最佳回答]1,如果是宽带光谱,棱镜对不同波长的透过率和光栅对不同波长的反射率不相同,即便使用同一个探测器,测量的光谱形状不同,通过校准能将光谱修正.2,光谱...
光线谱是什么?
光谱(spectrum):是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。光谱中最大的一部...光...
棱镜座的区别有哪些?
[回答]棱镜光栅的分光原理是衍射效应;由于光的衍射于干涉总效果,不同波长通过光栅作用各有相应的衍射角。光栅的波长越短,偏向角越小。光栅的谱级重叠,有...
棱镜座的有什么作用?
[回答]棱镜,一种由两两相交但彼此均不平行的平面围成的透明物体,用以分光或使光束发生色散。棱镜是透明材料(如玻璃、水晶等)做成的多面体。在光学仪器中...
光栅光谱和光的衍射图像有区别吗?
有区别棱镜对白光的色散光谱是由于不同颜色的光在棱镜中的传播速度不相等,也就是折射率不一样而形成的。波长越长,偏折越小,偏向角也就越小,所以红光比紫光...
光栅分光与三棱镜分光的光谱有何区别?_作业帮
[最佳回答]本质都是利用不同波长的光在发生反射折射衍射等时的不同表现分光光栅是利用衍射,三棱镜是利用折射一般说来,光栅光谱更精细,分辨率更高本质都是利...