微小卫星激光通信的关键技术及发展现状
空间激光通信凭借其速率高、体积小、质量轻和功耗低的优势,成为卫星间高速通信不可或缺的有效手段,特别在微小卫星应用场合,更能体现激光通信的优势。文章详细介绍了微小卫星激光通信技术领域最新的研究进展。在此基础上,总结了需要突破的同轨终端轻小型化、异轨终端轻小型化、大气湍流影响抑制等关键技术,归纳了工程化应用、双工通信、单点对多点、国产化和批产能力 5 个方面的发展趋势。 1 引 言
质量在 1000 kg 以下的人造卫星统称为“微小卫星”。按照质量由大到小其又可以进一步划分为小卫星、微卫星、纳卫星、皮卫星和飞卫星等。该类卫星具有研制周期短、成本低的特点。由微小卫星构成的卫星网络,在遥感、测距、通信等领域均有其优势,尤其在空间信息网络领域具有广阔的应用前景,可以提供具有低延迟,低成本、高速度、高可靠性的卫星服务。微小卫星已被视为卫星互联网的重要组成。
得益于卫星技术和航天发射技术的进步,逐渐具备低轨道微小卫星系统的大规模部署的条件,继而对星间、星地互联互通数据传输提出了更高的要求,同时微小卫星对其载荷尺寸、质量、功耗和成本,即 SWPaC(Size, Weight, Power and Cost)4 个方面要求很高。空间激光通信技术具有传输速率高、体积小、质量轻、功耗低、距离远、保密性好和抗干扰能力强等特点,其中速率高、体积小、质量轻和功耗低的特点特别适合应用于微小卫星平台,以适应高通量卫星星座对星间、星地数据传输需求。因此,微小卫星激光通信技术迎来发展契机。
微小卫星间通过激光通信方式进行互联互通,构建成激光通信网络。该网络呈现“网状网” 拓扑结构,根据通信链路类型的不同,各节点激光通信系统的用途、功能组成和技术参数也不同。
文章第 2 部分主要围绕用途、功能组成和技术参数 3 个方面总结微小卫星激光通信系统的最新发展现状,第 3 部分总结微小卫星激光通信系统的关键技术,第 4 部分归纳微小卫星激光通信技术的发展趋势。
2 微小卫星激光通信系统发展现状
卫星星座各个卫星节点间的激光链路是通过搭载在卫星上的激光通信系统互联实现的,近年来,典型微小卫星激光通信系统包括美欧日等国的 OCSD、CLICK、VSOTA、FITSAT 和国内的行云 T5。此外,商业化终端也正在形成,包括国外的 OPTEL-μ、Mynaric CONDOR 和 SA photonics Nexus 等。
2.1 OCSD
OCSD 卫星是由美国 NASA 和美国航空航天公司联合研制的,旨在演示甚小卫星通过激光 通信提供高速率数据通信的能力,以验证星地通信。
OCSD-A 星于 2015 年 10 月发射,试验卫星因姿态控制系统发生问题,导致无法对星上的激光通信载荷进行测试。
OCSD-B/C 星于 2017 年 11 月发射,试验验证了卫星对地下行 50/100 Mbps 的通信能力。
OCSD-B/C 的主要技术参数如表 1 所示。
表 1 OCSD-B/C 系统主要技术参数
OCSD 地面站的主要技术参数如表 2 所示。
表2 地面站主要参数
下行 50 Mbps 和 100 Mbps 的通信结果如图 2所示。可见,在没有纠错条件下误码率高达 1.0×10−6。
图2 下行通信误码率(卫星对地)
2.2 CLICK-B/C
由美国麻省理工学院 MIT(Massachusetts Institute of Technology) 、佛罗里达大学 UF(University of Florida)和美国航空航天局埃姆斯研究中心(NASA Ames Research Center)联合研制的CLICK 系统,用于验证星间、星地激光通信。
CLICK-B/C 系统包括光学和电子学两部分, 如图 3(彩图见期刊电子版)所示,终端上半部分为光学系统,下半部分电子学系统,外形尺寸为1.5 U(96 mm×96 mm×147 mm)。激光终端采用卫星作为粗指向机构(Coarse Pointing Assembly,CPA),利用星历数据解算卫星开环粗指向。精指向机构(Fine Pointing Assembly,FPA)是快速反射镜。
CLICK 终端设计中采用了信标光(976 nm)和信号光(1 537/1 563 nm),粗跟信标光收发分立设计,信标光发散角全角为 22.2 mrad(1/e2),发射功率为 250 mW,信标光接收分为两部分,分别为粗跟位置解算和精跟位置解算两个支路。其中:粗跟解算支路使用分立镜头 ,型号为 Aptina MT9P031,其通光口径为 16.1 mm,利用 CMOS 面阵探测器解算光斑位置,信标光精跟位置解算支路用四象限探测器作为位置传感器,与信号光收发支路共用开普勒 10 倍缩束望远系统,通光口径为 20 mm,利用微机电快反镜(MEMS FSM)作为 FPA,空间光缩束后,经由近红外/短波红外分色片和短波红外 1 537/1 563 nm分色片共分为 3 个光学支路,分别是信标光精跟位置解算支路,信号光发射支路和通信支路。在信标光精跟支路和信号光通信支路上装有相应谱段的窄带滤光片。信号光发散角全角为 120.2 μrad(1/e2),发射功率为 200 mW。通信支路利用 200 μm 空间靶面 APD 作为探测器。
图 3 (a)CLICK 激光终端布局及(b)原理框图
CLICK 的主要技术参数如表 3 所示。
表 3 CLICK 系统的主要技术参数
2.3 VSOTA
由日本情报通信研究机构(National Institute of Information and Communication Technology, NICT)和东北大学(Tohoku University)联合研制的超小型激光发射模块,用于验证星地激光通信。
VSOTA 的组成如图 4 所示。可见,VSOTA主要分为 VSOTA-COL和 VSOTA-E 两部分,其中:VSOTA-COL 包括激光准直发射和立方体两个部分,发射激光波长分别是 1 540 nm和 980 nm,采用分立光路发射方案,立方体用于装星标校;VSOTA-E 为激光二极管驱动电气部分。依赖卫星做 CPA,完成激光的指向功能。
图 4 VSOTA 系统组成
VSOTA 的主要技术指标参数如表 4 所示。
表 4 VSOTA 的主要技术指标
2.4 FITSAT-1
日本在 2012 年 10 月,利用国际空间站 ISS(International Space Station)发射了一颗名为 FIT-SAT-1微纳卫星,用于试验星地可见光通信,如图 5(彩图见期刊电子版)所示。
该卫星上表面(+Z)装载 50 颗绿 LED 阵列,下表面( -Z) 装载 32 颗红 LED 阵列, 发散角为120°,波长为 520 nm,调制频率为 1 kHz,占空比为15% 情况下,绿灯功耗为30 W,红灯功耗为15 W, 轨道高度为 400 km,通信速率为 1~10 kbps。
图 5 FITSAT-1 俯视图和仰视图
2.5 OPTEL-μ
瑞士 OPTEL 公司研制了 OPTEL-μ 星载终端。该项目启动于 2010 年,目的是将 LEO 卫星上产生的数据以 2.5 Gbps 的速率传输到光学地面站,遵循轻小型、稳定型和多功能的原则,为各种低轨道小卫星平台服务, 其系统组成如图 6 所示。
图 6 OPTEL-μ 系统组成
OPTEL-μ 终端由激光单元 LU(Laser Unit)、电气单元 EU(Electronics Unit)和光学头 OH(Op- tical Head)3 部分组成,3 者之间通过导线和光纤连接。
OH 内部集成了 CPA、光学系统和电气单元3 部分。其中:OH 用于实现激光扩束发射、激光耦合接收和光束指向等功能;LU 包括激光源、调制器和放大器,用于生成待发射光源;EU 包括终端控制器、通信电子电源(TCU)、RF 模块(RFM)和功率调节单元( PCU), 用于完成指向机构控制、激光器控制等功能。
OH 具有光束指向功能,可用于链路的建立与维持,在保证指向角度范围和通光口径的前提下,通过小型化设计,OH 的质量为 4.4 kg,体积为 204 mm×238 mm×226 mm。
OPTEL-μ 终端的主要技术参数如表 5 所示。
表 5 OPTEL-μ 的主要技术指标
2.6 Mynaric CONDOR
德国 Mynaric 公司的 CONDOR 星载终端如图 7 所示。CONDOR 用于星间双向通信,主要包括 CPA、光学系统和电子学 3 部分。
图 7 CONDOR 系统组成
系统原理框图如图 8 所示。光路组件主要包括望远镜、FPA、提前瞄准机构(Pointing Ahead Assembly, PAA) 、窄带滤光片(BP) 、 分光片(BS)、跟踪探测器(CTS&FTS)、发射准直和接收单元。
图 8 CONDOR 激光终端原理框图
CONDOR 的主要技术参数如表 6 所示。
表 6 CONDOR 的主要技术指标
2.7 行云 LaserFleet T5
2020 年 5 月 12 日,LaserFleet 公司为“行云二号”01 星(武汉号)和“行云二号”02 星研制的物联网星间激光通信载荷以“一箭双星”的方式发射成功。这是我国首次尝试低轨卫星星间激光链路技术验证。
LaserFleet 公司首款星间激光通信终端 T5 是搭载在微小卫星上的紧凑型激光通信终端。如图 9 所示。
图 9 LaserFleet 公司的星间激光通信终端 T5 布局
T5 设计指标如表 7 所示。
表 7 T5 主要技术指标
2.8 小 结
文中提及的 VSOTA、FITSAT、CLICK、OC-SD、OPTEL-μ、CONDOR 和 T5 几种激光通信终端由于卫星平台能力、业务数据带宽、组网方式等不同,相应的系统组成也不同,主要区别体现在光束指向机构方案不同。通过表 8 可以看到,为满足发射端光束指向要求,第一种方式是依赖微小卫星做 CPA,这时激光终端自身带有 FPA 或者不带 FPA[13];第二种方式是激光终端自身配有 CPA 和 FPA。另外, 对于通信距离远的场合(CONDOR 终端),由于通信双方相对运动会导致发射对准难度增加,这种情况下须配有 PAA。
表 8 激光通信终端光束指向机构
3 微小卫星激光通信的关键技术
3.1 星间同轨激光通信终端轻小型化
星间同轨通信场合下,根据轨道高度和轨道面布置卫星数量的不同,通信距离约为 3 000~6 000 km,依据卫星姿态,光束粗指向范围小于 5°。为完成星间互通互联,一颗卫星上安装的终端数量为2~3 颗,终端质量一般小于 8 kg。典型的同轨星间激光通信终端原理框图如图 10 所示,发射接收部分采用光谱分光方案。
图 10 典型同轨激光通信终端原理框图
为了达到轻小化目的,进一步缩小系统规模, 除了考虑采用高集成度电子学系统外,还需要进一步优化跟瞄机构和减少光学支路的数量,主要包括两方面:
(1)CPA 和 FPA 一体化技术
同轨终端的 CPA 多数情况下为摆镜,用以修正初始瞄准指向偏差和光束的慢速漂移,由于摆镜位于终端望远镜前端,镜面尺寸大。高分辨率的精跟探测器(FT sensor)为 FPA 提供位置反馈,从而实现高精度快速跟瞄。
从 CPA 优化角度出发,在满足偏转角度的前提下,提高系统谐振频率,从而获得更高的系统闭环带宽,即使其具有镜面尺寸大,运动范围大、谐振频率高、分辨率高的特点,如何降低系统功耗和质量,提高分辨率是关键。
从 FPA 优化角度出发,在满足谐振频率和分辨率的前提下,提高偏转角度,终端即可获得更大的光束指向范围。该类机构的要点是如何在保证大偏摆角度的同时获得高分辨率,同时保证一定的镜面尺寸,使其满足光学缩束和装调要求。
(2)位置探测支路和通信支路一体化技术
对于通信速率要求不高的应用场合,将光斑位置探测支路和通信支路合二为一是实现小型化的有效途径,这样减少了光学支路和分光组件。但是该类系统对于探测器响应和电子学处理系统提出了更高的要求。
3.2 星间异轨激光通信终端轻小型化
星间异轨相比于同轨通信场合复杂,通信对象可以是同星座的异轨道卫星,也可以是不同星座的卫星,轨道高度从低轨道到高轨道,通信距离范围大,约为 3000~36000 km,而终端质量受微小卫星平台约束,往往小于 20 kg。典型的异轨星间激光通信终端原理框图如图 11 所示。
图 11 典型异轨激光通信终端原理框图
异轨终端 CPA 是角度摆动范围较大的机构, 如 U 型架、潜望式、大偏摆镜等,由于通信距离远,望远镜通光口径偏大,约为 80~200 mm,通信双端距离远,便于搜索捕获,系统中还存在大发散角的信标光(Becon laser)发射和用于粗跟的信标光位置探测单元(CT Sensor)。
为了进一步降低系统规模,除考虑高集成度电子学系统外,还需要缩小光机部分的尺寸和重量,主要包括 3 方面:
(1)粗跟精跟探测器一体化技术
星间异轨终端有 CPA 和 FPA,在图 11 所示的系统中,CT sensor 为 CPA 提供位置反馈,FT sensor 为 FPA 提供位置反馈,粗精跟探测器一体化设计,无疑是精简了位置探测环节,但是要点在于如何保证捕获阶段大视场和精跟阶段的高分辨 需求,如何实现一个位置探测器对应粗精跟执行结构的运动解耦,如何匹配粗精跟位置反馈不同频率要求等,以上因素均为其研究要点。
(2)CPA 和望远镜一体化设计技术
CPA 和望远镜在异轨终端结构尺寸中占据很大比重,保证有效通光口径,实现二者一体化设计,是实现轻小型的关键。以折射式望远镜和二轴运动机构为例,图 12 给出了两种一体化设计思路。该种思路的关键点是光机耦合设计的同时,还需要保证光学系统的性能及装调可行性。
图 12 折射式望远镜及两轴转动结构一体化设计
(3)无信标光捕获技术
无信标光捕获技术,即利用信号光实现不确定区域的发射扫描和利用信号光位置探测支路实现不确定区域的捕获:一方面, 利用 CPA 和FPA 在扫描角度和扫描频率两方面相互补充,实现高效的区域扫描;另一方面是实现发射束散角和接收视场角的实时可调,从而确保双向捕获的效率,而发射束散角往往是几十微弧度量级,如何保证发散角调整过程中,光轴晃动偏差实时修正是无信标光捕获技术的实现要点。
3.3 星地通信大气影响抑制技术
星地激光通信链路,大气会给激光传输带来衰减、闪烁和漂移等影响,出现激光光束质量裂化、接收端光功率起伏范围大、接收光功率衰减增加等现象,导致光学接收支路调光困难,退化光斑位置提取处理复杂,跟瞄精度下降,通信质量变差,通信距离减少等问题。当前,大气影响因素是星地激光通信链路规划、激光通信终端设计过程中一个无法量化的因素。通过加大接收光学天线口径、引入自适应光学技术、高阶调制解调方法、编码纠错和光纤章动等技术手段能一定程度上抑制大气影响。但不同地域、不同天候以及环境变化带来的大气影响是实时变化的,因此,激光通信大气影响抑制技术属于理论和实践不断迭代、不断深入的一项技术。
4 发展趋势
4.1 太空互联网大发展将加快微小卫星激光通信技术从演示验证向工程应用的步伐
当前国内外空间信息网络发展迅猛,据悉,中国航天科技集团“鸿雁”星座(300 颗)、中国航天科工集团“ 虹云” 星座( 156 颗) 和“ 行云” 星座( 80 颗) 、 中国电子科技集团“ 天地一体化”( 80 颗 ) 等 ;国 外 “ Kuiper” 星 座 ( 3236 颗 ) , “Telesat”星座(298 颗),“Starlink”网络(1.2 万颗)等星座大都由低轨道微小卫星组成,大都将激光通信列为其骨干传输链路方式之一。其中, 截止 2020 年 4 月 22 日,“Starlink”星座在轨卫星已经达到 422 颗,计划从 2020 下半年开始发射装备有星间激光通信链路的卫星。
从军事应用角度看,欧美等国家也在加快布置微小卫星互联网。据美国国防部高级研究计划局(DARPA)官网 2020 年 5 月 11 日报道,DARPA正在与美国太空军和太空发展局合作,计划于2020 年底和 2021 年将“黑杰克”项目的小卫星发射到低地球轨道,用于验证卫星星座自治和空间网状网技术。该星座星间互联采用了激光通信技术,激光终端由SA 光子公司提供。
由上可见,太空互联网大发展,军民两大应用领域都将加快微小卫星激光通信技术的发展步伐,缩短从演示验证向工程应用的过渡时间。
4.2 终端双向传输能力需求
卫星业务数据最终要回传至地面,建立具有中继数传能力的微小卫星星座,实现数据在星间的中继传输,是实现卫星对地下行传输行之有效的手段。因此,具有双向数传能力的星载激光通信终端更加适用于微小卫星应用场合,而收发速率匹配是实现高效率中继的保障,因此,激光终端要具有全双工高速率通信能力。德国 Mynaric 公司的 CONDOR 终端目的即实现星间全双工 5~10 Gbps 通信。
4.3 单点对多点通信能力需求
随着激光通信技术在天基通信网络(GEO、 MEO、LEO)中的逐步应用,激光通信组网成为未来主要发展趋势。然而,受激光发散角小、动态接入、空间环境等影响,当前激光通信都是点对点互联,实现卫星组网的,因此,单个卫星上需要安装多台激光通信终端。受微小卫星平台资源限制,解决上述问题可通过优化终端质量功耗,达到要求更加严格的 SWaP 水平;研究动态路由解决接入问题;研究激光终端单点对多点通信能力。对于瞄准星间组网一点对多点的目标,美国加利福尼亚大学研究的 ISOC( Inter-spacecraft Omni- directional Optical Communicator)提供了一种思路,系统中每个单元利用 MEMS 快速反射镜摆扫可覆盖±12°的光学空间锥角,将多个发射接收单元拼接为阵列球型,可实现全天域空间角度覆盖(除卫星安装面遮挡外)。ISOC 系统光学头布局和实现原理如图 13( 彩图见期刊电子版) 所示。系统设计指标如下:通信距离为 200 km,通信速率为 1 Gbps,波长为 850 nm,发射功率为 1 W。
图 13 光学头布局及原理图
4.4 整机国产化能力需求
微小卫星激光通信终端主要包括瞄准、跟踪、光电位置探测和调制解调等部分,单元组件包括光学元件、电机、测角组件、快反、光斑位置解算(CMOS 焦平面探测器、QAPD 等)、通信组件(耐辐照光纤、光纤放大器、直接探测器组件、相干探测组件等)、信号处理组件(FPGA、DSP等),当前我国相关研究机构正在开展相关组件的国产化研究,整机国产化率要求也将从组件国产化发展为器件国产化。
4.5 批量生产及低成本能力需求
未来对微小卫星激光通信终端的需求量巨大,发射组网规划要求缩短生产周期。综合考虑以上要求,微小卫星激光通信终端研制方应在具有批量生产能力的同时降低终端研制成本,保证SWPaC, 最终形成货架产品 COTS( Commercial Off The Shelf)。
5 结束语
空间激光通信凭借其带宽大、质量小、功耗低等优势,有望成为未来空间高速通信的主要方式,在卫星互联网的应用中扮演重要角色。美国、欧洲和日本均已深入研究空间激光通信关键技术,且完成了多项在轨试验,正走向商业化运行,微小卫星激光通信领域发展也很迅猛,多项验证均已开展。我国虽然起步晚,但是近年发展很快,完成了 LEO-地 、GEO-地 、MEO-地 、MEOMEO、GEO-GEO、空空、空地等多项试验验证。
本文以微小卫星激光通信系统为切入点,综述了其部分发展现状,归纳了发展趋势,有助于该领域研究人员及时了解发达国家在微小卫星激光通信领域的发展现状和发展规划,有利于提前做好技术准备,使我国空间激光通信技术稳步推进, 让该技术助力微小卫星互联网快速发展。
本文转载自《中国光学》2020年第6期,版权归《中国光学》编辑部所有
作者:高世杰,吴佳彬等
卫星激光通信日渐火热!一文带你读懂技术、机遇与挑战
作者:梁张华随着数以千计的卫星被送入轨道,卫星激光通信技术日益受到重视,被视为一项关键使能技术。业界认为其结合了无线电通信和光纤通信的优点,具有带宽高、传输快速便捷以及成本低等优势,是解决信息传输“最后一千米”的最佳选择。
近年来,我国卫星激光通信迎来快速发展:一方面,卫星激光通信试验取得重大突破。 2020年,“实践二十号”卫星与丽江地面站成功建立激光通信链路,实现从卫星到地面站最高10Gbps的下行传输速率,其他关键指标也已经对齐国际先进标准。
另一方面,资本市场对卫星激光通信的商业化前景看好。 以卫星激光通信企业「氦星光联」为例,2023年4月,公司完成由永徽资本领投,紫金港资本、创享投资、嘉兴黑盒以及老股东东证创新、杭州岙华联合投资的第五轮融资。公司已实现通信单元的在轨验证。本轮融资距上一轮仅6个月,反映了一级市场对该项目和技术的认可。
什么是卫星激光通信?
卫星的通信方式主要可分为2种:使用电磁波进行通信,以及使用光进行通信。进一步细分,又可分为微波通信、太赫兹通信、激光通信和量子通信。
其中,太赫兹和量子通信或者相关技术仍不完善,或者器件的成熟度还未达到可工业使用的要求,目前距应用仍有较大距离。
目前最成熟的通信方式是微波通信。微波通信在器件、算法等各方面的发展都已经较为成熟。但同时,微波通信也存在一些不足之处。一是长距离传输需要较高的功耗,传输速率也会受到限制。二是由于星际环境复杂多变,微波通信需要申请特定的频段,避免与相邻卫星通信频率重叠,以防止信号干扰。
相对而言,激光通信技术日益成熟,在星间通信中的使用逐步增多。激光通信受益于地面的光纤通信对产业链的催化,其优势为传输速率高、无频段限制,且对其他任何星间通信不会造成干扰。
卫星激光通信是利用激光作为信号载波,将语音和数据等信息调制到激光上进行传输的方式。区别于微波通信,激光光束在空间中充当信息的传输载体。按照激光传输环境的不同,卫星激光通信分为两类:一是真空环境下的激光通信,即星间激光通信,主要应用于真空环境中的设备,如卫星与卫星、飞船、空间站等之间的通信;二是在大气环境下进行的激光通信,即星地激光通信,这种通信技术应用比较广泛,如用于卫星与地面、海上用户及空中飞行器的连接等。
卫星激光通信的核心技术要素包括关键组件、通信体制和对准捕获方式 。
其关键组件 包括激光发射器、发射光学镜头、接收光学镜头、激光接收器、控制硬件等。
空间激光通信共有两种最常用的通信体制 :相干通信和非相干通信。目前,相干通信和非相干通信都已在国际上完成在轨关键技术验证,并开始了大规模的组网建设部署。相比之下,在工程应用场景中,相干体制适用于链路距离较远且速率较高的情况,而非相干体制则适用于链路距离较近且速率较低的情况。
对准捕获方式 包括信标光和非信标光两种。“信标光+信号光”捕获方案是指激光通信终端使用单独的信标光。通过使用较宽的信标光束按照一定的扫描方式对不确定区域进行扫描。终端使用大视场的捕获探测器来监测接收信标光的质心位置,以实现对信标光的捕获和跟踪,进而将信号光引导至跟踪探测器接收视场,进行精确跟踪,最终实现激光建立通信链路。
“非信标光”捕获方案则是指在工作过程中不使用信标光,直接使用信号光进行扫描,并通过对信号光进行分光,实现光通信终端之间的捕获和跟踪功能。
非信标光对准示意图
来源:武凤等《基于空间成像的卫星光通信双向捕获技术》
卫星激光通信的技术优势和亟待突破的瓶颈
优势方面 ,卫星激光通信采用高频率激光作为载体,具有以下特点:
通信速率高 :传统微波通信载波频率在几GHz到几十GHz范围内,而激光载波频率具有数百THz量级,比微波高 3~5个数量级,可携带更多信息,加上波分复用等手段,未来可以以Tbps速率传输信息。
抗干扰能力强 :激光具有较窄的发散角,指向性好,没有卫星电磁频谱资源限制约束(因此无需申请空间频率使用许可证 ),通信过程中不易受外界干扰,抗干扰能力强。
保密性好 :卫星激光通信波谱使用0.8~1.55μm波段,属于不可见光,通信时不易被发现。而激光发散角小,束宽极窄,在空间中不易被捕获,保证了激光通信所需的安全性和可靠性。
轻量化 :激光波长比微波波长小3~5个数量级,激光通信系统所需的收发光学天线、发射与接收部件等器件与微波所需器件相比,尺寸小,重量轻,可满足空间卫星通信对星上有效载荷小型化、轻量化、低功耗的要求。
节省建设成本 :通过激光通信建立星间激光链路,可以有效减少地面信关站的建设需求;同时有助于数据流汇聚,进而简化卫星网络结构,从而多方面节省建设成本。
瓶颈方面 ,激光通信技术也面临着亟待突破之处:
接收机和发射机之间的瞄准系统复杂 :卫星激光通信发散角小,需要光学系统以及高精度的跟瞄辅助机制完成建链。尤其是接收机和发射机之间的瞄准非常困难。空间光通信系统要完成远距离卫星间光信号的发射与接收,必须进行远距离卫星间或者空间站间目标的捕获与跟踪,前者依赖于激光通信系统,后者取决于光学跟瞄系统(PAT)。
发射天线和接收天线的效率、精度、体积、重量和成本的平衡难度较高 :出于获取最小光斑的需求,发射天线可以设计成接近衍射极限,但同时给精确对准带来了困难。为了接收更多的能量信号,接收天线直径越大越好,但这会增加系统的体积、重量和成本。提高接收灵敏度十分重要。
远距离传输容易出现信号衰弱和延时等问题 :卫星距离地面的高度介于600千米~3.6万千米。激光通信的实用化,仍面临较大挑战。尤其是环境对激光通信信号会有较大干扰。虽然激光通信不受电磁干扰,但大气中的气体分子、水雾、霾等与激光波长相近的粒子会引起光的吸收和散射,极大地妨碍、吸收光波的传输;同时,大气湍流也会严重地影响到信号的接收。
全球卫星激光通信发展概况
近年来,由于星座网络的战略重要性日益凸显,卫星激光通信开始吸引大众的视线,并且呈加速发展态势,成为大国间博弈的热点。
美国
2015年以来,美国已开展多项卫星激光通信验证、演示计划和产业应用,在该领域的技术发展走在全球前列。
SpaceX 2015年宣布开始布局 “星链”项目;2019年,正式将首批60颗卫星发送入轨道,在星间采用卫星光通信技术。大规模的卫星激光通信技术得到采用,使卫星激光通信正式向产业化方向发展。
美国Optical Communication and Sensor Demonstration(OCSD)卫星验证了微小卫星可以通过激光星间链路实现高速率星地通信,打破了此前对激光星间通信在体积和质量上的限制。OCSD-A星于2015年10月发射,OCSD-B/C星于2017年11月发射,分别验证了卫星对地面空间站可以通过激光星间链路实现较高的通信速率。
类似地,麻省理工学院、佛罗里达大学和美国航空航天局埃姆斯研究中心联合研制的立方卫星激光红外连接CLICK系统也用于验证星间、星地激光通信。CLICK系统可以展示低SWaP激光终端,能够进行全双工高数据速率下行和星间连接,以提高精确测距和时间同步。
2022年5月,搭载太字节红外传输器(TeraByte InfraRed Delivery,TBIRD)的小型立方体卫星通过光通信链路与加利福尼亚州的地面接收器以高达100Gbps的速率传输了TB级数据,较传统上用于卫星通信的射频链路高1000多倍,也是截至目前从空间到地面的激光链路所能达到的最高数据速率。
2023年6月,美国NASA宣布其首个双向激光中继系统演示项目(LCRD)完成第一年在轨实验。LCRD将连续两年在运行环境中进行高数据速率激光通信,演示激光通信如何满足NASA对更高数据速率的不断增长的需求。同时,LCRD的架构将允许它作为空间中的测试平台,用于开发额外的符号编码、链路和网络层协议等。NASA相关负责人认为该技术可能将成为从太空发送和接收数据的未来技术手段。
此外,NASA 2022年还推进了另一个深空光通信DSOC飞行演示。空间和地面之间的通信将在近红外区域使用先进的激光器,在寻求在不增加质量、体积或功率的情况下,将通信性能提高10~100倍。
欧洲
欧洲在卫星中继领域已有成熟的激光通信应用。
欧洲数据中继系统EDRS基于GEO卫星平台建立的卫星中继平台,搭载了激光和Ka两种模式的通信载荷,通过该终端载荷连接低轨到高轨和高轨到地面的通信,可以为低轨卫星用户、航空用户、无人机用户和地面终端设备提供中继服务,其通信距离为4.5万千米。
2016年6月,EDRS-A采用了星间激光通信,信息速率为600Mbps,每天为40颗低高轨卫星提供中继服务。2019年8月,EDRS-C成功发射到地球静止轨道运行,其激光星间链路的实现终端架设于SmallGEO开发的平台上。预计于2025年补充的第三颗卫星EDRS-D的有效载荷将由三个下一代激光通信终端组成,以允许EDRS-D与多颗卫星同时通信。它将包含三组激光终端,预计实现高达8万千米的传输距离,可将亚太地区数据传到欧洲以实现全球数据中继服务。
德国TESAT公司推出了一系列激光终端可以适应多任务需求。对于近地轨道任务,TESAT推出了SmartLCT终端,它可以部署在更小、更轻的卫星上,从而节省大量的质量和空间。SmartLCT的数据传输距离长达4.5万千米,同时可提供1.8Gbps的高速数据传输,仅重约30kg。
在小卫星领域,TESAT的激光产品系列提供小质量的TOSIRIS和CubeLCT。它们分别以10Gbps或100Mbps的速度传输对地数据,其中TOSIRIS仅重8kg。通过激光终端构建地球数据骨干网,TESAT可以实现近乎实时的全球数据传输。
德国Mynaric公司推出CONDOR Mk3激光终端,可提供在7500千米距离上达到10Gbps的通信速率。终端设计寿命7年,较上一代产品的通信能力有大幅提升。
中国
我国空间激光通信技术的研究工作开始于20世纪90年代,主要研究卫星激光通信整机研制,高精度光学天线和跟瞄系统优化,激光器、光放大器和探测器等核心器件服务质量提高和模块化定制等技术难点。
作为国内第一次星地激光通信在轨技术试验,“海洋二号”卫星于2011年成功入轨,通过非相干通信,可以实现2000千米距离星地通信,最高通信速率可达504Mbps。
在此之后,“墨子号”量子卫星于2016年成功发射,通过相干调制方式实现了5.12Gbps的激光通信速率,能够支持具备高维图像和视频信息的加密传输。
2016年,“天宫二号”与新疆南山地面站成功实现了激光通信实验, 其激光终端的数据下行速率为1.6Gbps。该载荷也首次实现了白昼激光通信,其载荷跟踪能力在白昼时与夜晚情况接近。
2017年,“实践十三号”卫星实现全球第一次同步轨道卫星与地面的双向高速激光通信,通信速率最高可达5Gbps,通信距离最高可以支持4.5万千米,刷新了当时国际高轨星地激光最高通信数据率。
2020年,“实践二十号”卫星与丽江地面站成功建立激光通信链路,实现从卫星到地面站最高10Gbps的下行传输速率,其他关键指标也已经对齐国际先进标准。
2023年6月,中国科学院空天信息创新研究院利用自主研制的500毫米口径激光通信地面系统,与长光卫星技术股份有限公司所属吉林一号MF02A04星成功开展星地激光通信试验,通信速率达到10Gbps,所获卫星载荷数据质量良好,可满足高标准业务化应用需求。
可以看出,中国在卫星激光通信领域的技术发展已与欧洲相当,但落后于美国。
卫星激光通信未来前景展望
卫星激光通信已显示出应用场景广泛、市场潜力巨大的乐观前景。
应用场景方面 ,除了在军事通信领域作用重大,可以建立军事通信网络,实现远程通信和机密通信等以外。在如下民用领域卫星激光通信开始显现出良好的应用潜力:
互联网通信 :可支持建立全球范围的互联网通信网络,为各种应用提供高速的互联网接入服务
海洋通信 :可在海洋上建立通信网络,为海上作业、船舶通信等提供稳定的通信服务
天文观测 :能用于天文观测,通过在地球表面搭建多个观测站,利用激光光束与卫星进行通信,实现空间天文学的观测和研究
应急通信 :可在抗震救灾、突发事件等紧急情况下,弥补移动通信受损等不足
市场前景方面 ,根据太平洋证券预测,我国2027年卫星激光通信终端市场规模将达到130.38亿元,2024-2027年间CAGR将达68.4%。
2024-2027年中国卫星激光通信终端市场规模预测(亿元)来源:太平洋证券
相关问答
高通量激光卫星标志我国微型通信进入什么时代?
我国卫星通信已进入高通量时代。高通量卫星通信系统具备更高的数据传输速率和更大的容量,能够满足日益增长的通信需求。我国已成功发射了一系列高通量卫星,如...
一直在说量子通信,我想问的是量子卫星与地面用激光连接是干嘛的,通信都要这么连吗?
非正式的说,目前量子卫星的通信的原理相当于天上的量子卫星瞄准地面上的接收站(当然也可以说是地面上的接收站瞄准天上的量子卫星,或者称为双向瞄准)发射了一...
天通卫星消息怎么发?
通过激光通信技术进行传输。天通卫星采用激光通信技术进行消息传输。激光通信技术利用激光束进行信息传输,具有高速、高带宽、低延迟等优点,适用于卫星通信。...
什么是激光卫星?
激光卫星指利用空间激光卫星、同步中继卫星及地面接收站等组成的激光卫星发电系统。由激光能发生系统、传输系统和接收系统所组成。部署在太阳同步轨道上的激...
starlink原理?
Starlink意思是“星星联网”它将若干个人造卫星以激光通讯的方式进行连接。Starlink是SpaceX提出的目前影响力最大的计划,当然也是SapceX将来获利最大的计划。...
量子通信技术出现后会出现什么情况?
量子通信技术是迄今为止唯一被严格证明是无条件安全的通信方式。它利用通信器材发射出的量子电波对等通信原理,导致网络黑客进不来自己的通信网络,即使有漏网之...
墨子跟量子通信有什么关系?量子通信卫星为什么要以他命名?
而目前的量子通信是利用了量子物理的一些基本原理,量子的概念是在1900年才由普朗克提出。但量子通信主要还是基于光子进行的,采用直线传播的激光来实现。由于...
用激光灯能照到卫星吗?
激光则不然,只要其功率足够大,只要捕获到卫星,基本上卫星就很难逃脱,如果一击不中,再击的准备时间很短,也就是有足够的再击准备时间。但是强激光打卫星有很多...
我国自行研制的北斗卫星导航系统具有定位、导航和通信等功能...
[最佳回答]我国自行研制的北斗卫星导航系统具有定位、导航和通信等功能,它传递信息是利用电磁波传递信息的.故选:C.我国自行研制的北斗卫星导航系统具有定位...