半导体照明
HOME
半导体照明
正文内容
激光器光通讯 关于光通信的最强进阶科普
发布时间 : 2024-11-24
作者 : 小编
访问数量 : 23
扫码分享至微信

关于光通信的最强进阶科普

大家好,今天这篇文章,将重点介绍一些光通信基础知识。

众所周知,我们现在的整个通信网络,对于光通信技术有着极大的依赖。我们的骨干网、光纤宽带以及5G,都离不开光通信技术的支撑。

所谓光通信,就是利用光信号携带信息,在光纤中进行数据传输的技术。

光波是电磁波的一种,所以,光信号也符合电磁波的物理特性。

想要提升光通信的信息传输量,基本上分为以下三种思路:

第一个思路:提升信号的波特率。

波特率(Baud),准确来说就叫波特,叫波特率只是口语习惯。它的定义是:单位时间内传送的码元符号(Symbol)的个数。

波特率很容易理解,我每秒传输的符号越多,当然信息量就越大。

目前,随着芯片处理技术从16nm提高到7nm和5nm,光学器件和光电转换器件的波特率也从30+Gbaud提高到64+Gbaud、90+Gbaud,甚至120+Gbaud。

然而,波特率并不是无限大的。越往上,技术实现难度越高。高波特率器件,会带来一系列系统性能损伤问题,需要更先进的算法和硬件进行补偿。

大家需要注意,波特率并不是比特率(传输速率)。

对于二进制信号,0和1,1个符号就是1比特(bit)。那么,每秒的符号数(波特率)就等于每秒的比特数(比特率,bit/s)。对于四进制信号,1个符号可以表达2比特,每秒的符号数×2=每秒的比特数。

四进制,相同的波特率,比特率翻倍(信息量翻倍)

所以说,为了提升每秒的比特数(信息传输速率),我们需要一个符号能尽量表达更多的比特。怎么做到呢?我们待会再说。

第二个思路:采用更多的光纤数或通道数。

用更多的光纤,这个思路很容易粗暴。光纤数量越多,相当于单车道变双车道、四车道、八车道,当然传输信息量会翻倍。

但是,这种方式涉及到投资成本。而且,光纤数太多,安装也会很麻烦。

在一根光纤里,建立多个信道,这是个更好的办法。

信道数可以是空间信道,也可以是频率信道。

空间信道包括模式(单模/多模)、纤芯(多纤芯的光纤)、偏振(待会会讲)。

频率信道的话,这就要提到WDM(波分复用技术)。它把不同的业务数据,放在不同波长的光载波信号中,在一根光纤中传送。

WDM波分复用

波长×频率=光速(恒定值),所以波分复用其实就是频分复用

WDM同样也不是无限波数的。每个波长都必须在指定的波长范围内,而且相互之间还要有保护间隔,不然容易“撞车”。

目前行业正在努力将光通信的频段拓展到“C+L”频段,可以实现192个波长,频谱带宽接近9.6THz。如果单波400G,那就是192×400G=76.8Tbps的传输速率。

第三个思路,也是我们今天要重点介绍的思路—— 高阶调制

也就是说,采用更高级的调制技术,提升单个符号所能代表的比特(对应第一个思路),进而提升比特率。

对于调制,大家一定不会陌生。我们经常听说的PAM4、BPSK、QPSK、16QAM、64QAM,都是调制技术。

以前我给大家讲电通信和移动通信的时候,提到过:想让电磁波符号表达不同的信息,无非就是对电磁波的几个物理维度进行调整。

大家比较熟悉的物理维度,是幅度、频率、相位。

光波也是电磁波,所以,对光波进行调制,思路基本是一样的。

光纤通信系统,主要有6个物理维度可供复用,即:频率(波长)、幅度、相位、时间(OTDM)、空间(空分复用)、偏振(PDM)。

幅度调制

频率复用其实就是WDM波分复用,刚才已经介绍过了。接下来,我们看看幅度调制

在早期的光通信系统里,我们采用的是直接调制 (DML,Direct Modulation Laser)。它就属于强度(幅度)调制。

在直接调制中,电信号直接用开关键控(OOK,On-Off Keying)方式,调制激光器的强度(幅度)。

这个和我们的航海信号灯有点像。亮的时候是1,暗的时候是0,一个符号一个比特,简单明了。

直接调制的优点是采用单一器件,成本低廉,附件损耗小。但是,它的缺点也很多。它的调制频率受限(与激光器驰豫振荡有关),会产生强的频率啁啾,限制传输距离。直接调制激光器可能出现的线性调频,使输出线宽增大,色散引入脉冲展宽,使信道能量损失,并产生对邻近信道的串扰(看不懂就跳过吧)。

所以,后来出现了外调制 (EML,External Modulation Laser)。

在外调制中,调制器作用于激光器外的调制器上,借助电光、热光或声光等物理效应,使激光器发射的激光束的光参量发生变化,从而实现调制。

如下图所示:

外调制常用的方式有两种。

一种是EA电吸收调制 。将调制器与激光器集成到一起,激光器恒定光强的光,送到EA调制器,EA调制器等同于一个门,门开的大小由电压控制。通过改变电场的大小,可以调整对光信号的吸收率,进而实现调制。

还有一种,是MZ调制器,也就是Mach-Zehnder马赫-曾德尔调制器

在MZ调制器中,输入的激光被分成两路。通过改变施加在MZ调制器上的偏置电压,两路光之间的相位差发生变化,再在调制器输出端叠加在一起。

电压是如何产生相位差的呢?

基于电光效应——某些晶体(如铌酸锂)的折射率n,会随着局部电场强度变化而变化。

如下图所示,双臂就是双路径,一个是Modulated path(调制路径),一个是Unmodulated path(非调制路径)。

当作用在调制路径上的电压变化时,这个臂上的折射率n发生了变化。光在介质中的传播速率v=c/n(光在真空中的速率除以折射率),所以,光传播的速率v发生变化。

两条路径长度是一样的,有人先到,有人后到,所以,就出现了相位的差异。

如果两路光的相位差是0度,那么相加以后,振幅就是1+1=2。

如果两路光的相位差是90度,那么相加以后,振幅就是2的平方根。

如果两路光的相位差是180度,那么相加以后,振幅就是1-1=0。

大家应该也想到了,其实MZ调制器就是基于双缝干涉实验,和水波干涉原理一样的。

峰峰叠加,峰谷抵消

光相位 调制

接下来,我们讲讲光相位调制。(敲黑板,这部分可是重点!)

其实刚才我们已经讲到了相位,不过那个是借助相位差产生幅度差,依旧属于幅度调制。

首先,我们回忆一下高中(初中?)的数学知识——虚数和三角函数。

在数学中,虚数就是形如a+b*i 的数。实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。

大家应该还记得,坐标轴其实是可以和波形相对应的,如下:

波形,其实又可以用三角函数来表示,例如:

多么优美,多么妖娆~

X = A * sin(ωt+φ)= A * sinθ

Y = A * cos(ωt+φ)= A * cosθ

ω是角速度,ω=2πf,f是频率。

φ是初相位,上图为0°。

还记得不?把A看出幅度,把θ看成相位,就是电磁波的波形。

θ=0°,sinθ=0

θ=90°,sinθ=1

θ=180°,sinθ=0

θ=270°,sinθ=-1

好了,基础知识复习完毕,现在进入正文。

首先,我们介绍一下,星座图

其实刚才介绍MZ调制器相位变化的时候,已经看到了星座图的影子。下面这几张图图,都属于星座图。图中的黑色小点,就是星座点。

大家会发现,星座图和我们非常熟悉的纵横坐标系很像。是的,星座图里的星座点,其实就是振幅E和相位Ф的一对组合。

就要提出 I/Q调制 (不是智商调制啊)。

I,为in-phase,同相或实部。Q,为quadrature phase,正交相位或虚部。所谓正交,就是相对参考信号相位有-90度差的载波。

我们继续来看。

在星座图上,如果幅度不变,用两个不同的相位0和180°,表示1和0,可以传递2种符号,就是BPSK (Binary Phase Shift Keying,二进制相移键控)。

BPSK

BPSK是最简单最基础的PSK,非常稳,不容易出错,抗干扰能力强。但是,它一个符号只能传送1个比特,效率太低。

于是,我们升级一下,搞个QPSK (Quadrature PSK,正交相移键控)。

QPSK,是具有4个电平值的四进制相移键控(PSK)调制。它的频带利用率,是BPSK的2倍。

图片来自是德科技

随着进制的增加,虽然频带利用率提高,但也带来了缺点——各码元之间的距离减小,不利于信号的恢复。特别是受到噪声和干扰时,误码率会随之增大。

为解决这个问题,我们不得不提高信号功率(即提高信号的信噪比,来避免误码率的增大),这就使功率利用率降低了。

有没有办法,可以兼顾频带利用率和各码元之间的距离呢?

有的,这就引入了QAM (Quadrature Amplitude Modulation,正交幅度调制)。

QAM的特点,是各码元之间不仅相位不同,幅度也不同。它属于相位与幅度相结合的调制方式。

大家看下面这张动图,就明白了:

Amp,振幅。Phase,相位。

其实,QPSK就是电平数为4的QAM。上图是16QAM,16个符号,每个符号4bit(0000,0001,0010等)。

64QAM的话,64个符号(2的n次方,n=6),每个符号6bit(000000,000001,000010等)。

QPSK这种调制,到底是怎么捣鼓出来的呢?

我们可以看一个通过MZ调制器捣鼓QPSK的图片:

图片来自是德科技

在发射机中,电比特流被一个多路复用器分成信号的I和Q部分。这两部分中的每一部分都直接调制MZ调制器一只臂上的激光信号的相位。另一个MZ调制器把较低的分支相移π⁄2。两个分支重组后,结果是一个QPSK信号。

高阶QAM的调制难度更大。限于篇幅,下次我再专门给大家解释。

此前介绍无线通信调制的时候,说过5G和Wi-Fi 6都在冲1024QAM。那么,光通信是不是可以搞那么高阶的QAM呢?

不瞒您说,还真有人这么干了。

前几年,就有公司展示了基于先进的星系整形算法和奈奎斯特副载波技术的1024QAM调制,基于66Gbaud波特率,实现了1.32Tbps下的400公里传输,频谱效率达到9.35bit/s/Hz。

不过,这种高阶调制仍属于实验室阶段,没有商用(也不知道有没有可能商用)。目前实际应用的,好像没有超过256QAM。

高阶QAM虽然带来了传输速率的大幅提升,但对元器件性能要求很高,对芯片算力的要求也高。而且,如果信道噪声或干扰太大,还是会出现刚才所说的高误码率问题。

1024QAM,密集恐惧症的节奏

在相同的30G+波特率下,16QAM的光信噪比(OSNR)比QPSK高出约5dB。随着星座中星座点个数的增加,16QAM的OSNR将呈指数增长。

因此,16QAM或更高阶QAM的传输距离将被进一步限制。

为了进一步榨干光纤通信的带宽潜力,厂商们祭出了新的大杀器,那就是——相干光通信 。感兴趣的读者可以进一步去了解。

PAM4和偏振复用

文章的最后,再说说两个“翻倍”技术——PAM4和PDM偏振多路复用。

先说PAM4。

在PAM4之前,我们传统使用的都是NRZ。

NRZ,就是Non-Return-to-Zero的缩写,字面意思叫做“不归零”,也就是不归零编码。

采用NRZ编码的信号,就是使用高、低两种信号电平来表示传输信息的数字逻辑信号。

NRZ有单极性不归零码和双极性不归零码。

单极性不归零码,“1”和“0”分别对应正电平和零电平,或负电平和零电平。

单极性不归零码

双极性不归零码,“1”和“0”分别对应正电平和等效负电平。

双极性不归零码

所谓“不归零”,不是说没有“0”,而是说每传输完一位数据,信号无需返回到零电平。(显然,相比RZ,NRZ节约了带宽。)

在光模块调制里面,我们是用激光器的功率来控制0和1的。

简单来说,就是发光,实际发射光功率大于某门限值,就是1。小于某门限值,就是0。

传输011011就是这样:

NRZ调制

后来,正如前文所说,为了增加单位时间内传输的逻辑信息,就搞出了PAM4。

PAM4,就是4-Level Pulse Amplitude Modulation,中文名叫做四电平脉冲幅度调制。它是一种高级调制技术,采用4个不同的信号电平来进行信号传输。

还是传输011011,就变成这样:

PAM4调制

这样一来,单个符号周期表示的逻辑信息,从NRZ的1bit,变成了2bit,翻了一倍。

NRZ VS PAM4 (右边是眼图)

那么问题来了,如果4电平能够翻一倍,为啥我们不搞个8电平、16电平、32电平?速度随便翻倍,岂不爽歪歪?

答案是不行。

主要原因,还是在于激光器的技术工艺。实现PAM4,需要激光器能够做到对功率的精确控制。

如果工艺不OK,搞更高位数电平,就会造成很高的误码率,无法正常工作。即便是PAM4,如果信道噪声太大,也是不能正常工作的。

什么是PDM偏振多路复用 呢?

PDM偏振多路复用,就是Polarization Division Multiplexing

不知道大家有没有看过我之前写过的关于天线的文章。天线里面,有一个双极化的概念,在空间上,把电磁波“转动”90度,就可以实现两个独立的电磁波传输。

天线的双极化

偏振复用的道理,其实也差不多。它利用光的偏振维度,在同一波长信道中,通过光的两个相互正交偏振态,同时传输两路独立数据信息,以此达到提升系统总容量的目的。

它等于实现了双通道传输,和PAM4一样,翻了一倍。

PDM偏振复用,X偏振和Y偏振,各自独立

图片来自是德科技

好啦,以上就是今天文章的全部内容。感谢大家的耐心观看,我们下期介绍相干光通信,不见不散哟!

—— 全文完 ——

参考文献:

1、知否,知否,什么是相干光通信,是德科技

2、戴维带你认识光通讯,菲尼萨·戴维

3、话说大容量光纤通信,Fiber,知乎

4、认识光通信,原荣,机械工业出版社

转载内容仅代表作者观点

不代表中科院物理所立场

如需转载请联系原公众号

来源:鲜枣课堂

编辑:云开叶落

图解激光器知识点

用于光通信的激光器,以半导体激光器为主,主要分两种类型,边发射与面发射

▲边发射

▲面发射

VCSEL

VCSEL,叫垂直腔面发射

☝垂直腔,两组布拉格光栅做发射腔

▲VCSEL历史

▲VCSEL应用

▲典型氧化物限制结构

这个限制,一是限制光场,二是降低阈值电流

FP与DFB

FP与DFB都是边发射激光器,FP结构的激光器,是通过两侧反射镜做光反馈,DFB是通过光栅做光反馈

▲FP的反射腔

▲DFB的布拉格反射

▲FP无需刻蚀光栅,工艺简单

▲DFB需要刻蚀光栅,工艺复杂

▲FP是多纵模激光器

▲DFB是单纵模激光器

DFB的RWG与BH结构

DFB激光器应用广泛,常用的RWG结构,与BH结构

▲紫色是波导结构

RWG,脊波导,上图紫色是波导设计,工艺简单

BH,异质掩埋,掩埋的是有源层,工艺复杂

为什么要掩埋?

RWG结构的有源层是下图这样

脊型波导,再通过两侧折射率差,将光场压缩至椭圆形,下图

掩埋结构,把有源层做窄

那它的光场压下来,就是接近于圆形

BH结构的圆形光斑,非常适用于通信,与光纤耦合效率高,功率大,阈值电流低(功耗低)

EML

EML,是DFB结构与EAM电吸收调制器的集成器件

半导体有激子吸收效应,也就是可以吸收光,那DFB的光,一会儿吸收一会儿不吸收,对外界看起来就是1,0的区别

▲EML ▼DML

电吸收调制器原理

外加电场后,能带发射概念

吸收波长偏移,产生调制效果

DBR激光器

DBR激光器与DFB类似,只一半光栅,可以通过电流调整相位,也就是说可以通过电流的大小,调谐输出波长

可调谐激光器

可调谐激光器,就是能调输出波长,上一类的DBR是可以做调谐的。

最简单的一种,就是温度调谐,DFB激光器可以随温度变化而变化,那让他工作在不同温度,就可以实现不同波长

把激光器级联起来,就可以调更多的波长了的。

另一种,就是双臂结构,设计俩激光器(各种类型都行),用游标效应。

咱FP出来的是多纵模,

两组FP,纵模间隔略作差异设计

能对准的就可以激射,向游标卡尺一样

这种双臂结构,有好些设计,原理都类同

还有已与采样光栅的DBR

量子级联激光器

量子级联激光器主要用在

咱们DFB是多量子阱结构(十来个),量子级联就是3个,通过量子隧穿三步完成激射

电子不断从高能级向低能级跳,辐射出光子能量

QCL量子级联激光器,同样可以做FP、DFB、外腔调制各种类型,波长集中在红外

气体激光器

气体激光器是用气体做增益物质,CO2激光器是应用比较多的一种,主要在激光加工行业

CO2激光器,有一种辅助气体氮气,电击中氮气后,能量增加会被CO2吸收,再通过两侧反射镜,就激射出光

光纤激光器

光纤激光器,增益物质叫增益光纤

普通传输信号的光纤是单包层,不产生增益

增益光纤是双包层

在泵浦光的作用下,纤芯就吸收能量,产生增益。增,就是放大

光纤激光器,主要用于激光加工行业

准分子激光器

准分子激光器,也是一种气体激光器,他俩的区别在于CO2做不了超快激光器,它的加工过程产生热量,对加工面有损伤

准分子激光器,破坏的是物质的肽键,对加工面不产生破坏力

准分子的准,是说常态下这些分子不存在,只有激发状态下才有,常用这些惰性气体做准分子激光器,193nm是半导体光刻工艺中最常用的

常态下没有ArF这种分子,分别是蓝色的氟和红色的氩

收到激发时,产生一个极端时间的ArF分子,从高能级跳下时分开同时产生一颗光子

这个超短脉冲,破坏分子肽键,这就是加工过程

世界上第一台激光器--红宝石激光器

1960年,梅曼发明第一台激光器,是红宝石激光器

用红宝石做增益物质,在泵浦灯光作用下产生辐射,通过两个反射片进行放大,就是LASER,受激辐射光放大

YAG激光器

类似,把红宝石晶体,换成钇铝石榴石,就叫YAG激光器,也是用于激光加工市场

自由电子激光器

这是用于军事上的一类能量激光武器,可以穿透钢板

目前体积也很大

它的原理很简单,用电子摆动起来(像波),光是电磁波

用波动的电子做谐振,产生加速,产生巨大的光能量

如何让电子产生波动性?磁可以改变电的方向

用一组极性交替分布的磁,让电子穿过去

电子就产生扭摆

这就成了自由电子激光器

太赫兹激光器

太赫兹,是个新兴技术,它的电磁波频谱介于微波与红外之间,(国华用绿色标志),刚好位于电学与光学范畴的交接点,太赫兹可以用于安检、以及早期癌症检测等等领域

它既可以做太赫兹电学应用,也可以做光学应用,光学上加反射腔等也可以做激光器

用超短激光打在两片电极中间,就可以激射出太赫兹波

它的电极(电学范畴这样)

太赫兹的传输,发射与接收

去年,MIT 在nature发表一个中红外太赫兹激光器,波长100um

▲激射太赫兹

▲同频同相,进行锁频放大

相关问答

为什么半导体激光器的诞生才使光纤得到的重视?

光纤是用来传导光的,现在最重要的应用领域就是光通讯,编码器先根据数字信号对激光进行编码,然后通过光纤传输到目的地,再由解码器把光信号解读成数字信号。...

通讯上用大功率激光吗?

利用激光传输信息的通信方式,是20世纪60年代开始出现、当前一直在不断发展的一种新的通信方式。这种通信方式可用于传输声音、文字、图像和数据等各种形式的...

什么是光通讯技术?

光通讯技术是一种基于光传输信息的技术,通过光纤等光学器件将信息以光信号的形式传输。与传统的电信技术相比,光通讯技术具有更高的传输速度、更大的传输容量...

1960年,美国科学家梅曼制成了世界第一台红宝石激光器,它能产...

[回答]频率(单一),方向(性好,能量集中),(光导纤维)

英语翻译最早进入实用的半导体激光器,其激射波长为0.83到0.8...

[最佳回答]Thefirstsemiconductorlasersintopractical,thelasingwavelength0.83鍒?.85um.Thiscorrespondsto...

光通讯模块是干什么的?

光通讯模块是一种用于光通讯系统中的设备,主要用于将数字信号转换成光信号,以实现高速、远距离和大容量的数据传输。光通讯模块通常由激光器、光电探测器、调...

激光光缆通信原理?

光纤通信是利用光波在光导纤维中传输信息的通信方式。由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤...

cpo需要用到光纤激光器吗?

同时,激光器加工还可以实现对不同材料的加工,可针对不同材料选用不同波长的激光器,实现更为精细的加工。3光纤激光器是其中一种常用的激光器类型,具有小体积...

激光器ttl调制原理?

TTL调制激光器意思:类似通信系统中的调制,将激光器调制后输出模拟信号,如果将有效信号加载到模拟信号中,在信号提取时受到的干扰会很小,比如有效信号是直流...

激光的波长是什么意思?-改成一地毛吧的回答-懂得

激光波长是指激光器的输出波长,是激光器输出激光光束的重要参数。相应输出的频率叫激光频率。激光是一种特殊的光,有光的特性,只不过比普通光颜色更...

 猴岛网  戴玉堂 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部