太阳能光伏
HOME
太阳能光伏
正文内容
光通讯网络实验 水下无线光通信商用设备试验取得成功
发布时间 : 2024-11-25
作者 : 小编
访问数量 : 23
扫码分享至微信

水下无线光通信商用设备试验取得成功

来源:科技日报

科技日报武汉2月4日电 (记者刘志伟)国内首台水下无线光通信商用设备在湖北武汉进行了试验并取得成功,通信距离达到50米,速率可达3Mbps,在20米距离时通信速率可达50Mbps。

由武汉六博光电技术公司等单位研发的LC50CCA-50/40WD 双光源水下无线光通信设备于去年底完成研制,分别在去年12月和今年1月开展了水下通信试验,实现了数十Mbps通信速率和数十米通信距离的实验结果,可以在水下传输视频、图片和文字等多种信息。

传统水下无线通信主要采用声波和水下射频,因声波频率低,通信速率只有kbps量级,不能满足水下高速通信要求。射频波可以从几十Hz到GHz,但只有30—300Hz的超低频信号才能在导电的海水中传播,因为高频信号会有很大的衰减。因此水下射频通信的调制带宽也相对较低,导致短距离内的数据速率有限。

据介绍,该产品适用于水下高速通信的需求,可应用于水下传感器数据采集、水下机器人等运动平台间高速信息传输。经半年多测试,该设备已具备商品性能,科研团队也已着手起草水下光通信技术有关行业标准和申请工作。

光通信单波速率从100G增至800G!上交大学者再创世界纪录

“你们发的微信,背后的信号传输有可能就是经过我设计的算法进行处理的。” 上海交通大学副教授诸葛群碧,曾这样在课堂上对学生讲解自己的成果。

三千多年以前,人们用烽火产生的光和烟来传递敌人入侵的信息,这是人类第一次使用光作为载体来实现通信。

进入二十一世纪,对人们的日常生活影响最深远的科技无疑是互联网。近两年,5G 也成为了大众耳熟能详的技术名词。据统计,普通智能手机用户每天点亮屏幕的次数不少于 47 次。

当我们每次向远方的好友发送信息时,信息通过无线信号从手机发送出去,而对方也是通过无线信号接收的。但无线信号是怎么跨越几百公里甚至上万公里的呢?这不为大众所知的无名英雄就是光纤通信。对于全球的通信基础设施来说,光纤其实承载了 90% 以上的通信流量,扮演着“主动脉”的角色。

光纤通信的历史可以回溯到上世纪六十年代。1966 年,“光纤之父”高琨先生发表论文提出光纤可以作为长距离高速通信的介质。此后,光纤通信系统历经数代技术革命,使得一根光纤里可以传输的信息容量增长了两百多万倍。2009 年,高琨先生因这一伟大贡献获得了诺贝尔物理学奖。同年,100G 数字相干光通信系统问世,标志着光纤通信正式迈入相干时代。也就在这一年,现任上海交通大学副教授的诸葛群碧远赴加拿大麦吉尔大学求学,正式踏上了光通信的研究之路。

为了进一步提升单根光纤的传输容量,数字相干系统采用数字信号处理算法来补偿光信号在光纤中传输时受到物理损伤所导致的失真。在攻读博士学位期间,诸葛群碧提出了一系列新型算法,对激光器相位噪声、光收发机损伤、光纤偏振效应等系统损伤进行有效补偿,并且前瞻性地设计了灵活速率和带宽可变的光通信系统架构,成果受到了广泛认可。

凭借在光通信系统领域取得的优异成果,诸葛群碧入选了《麻省理工科技评论》“35 岁以下科技创新 35 人”(Innovators Under 35)2020 年中国区榜单。

图 | 《麻省理工科技评论》“35 岁以下科技创新 35 人”2020 年中国区榜单入选者诸葛群碧

“你们发的微信,背后的信号传输有可能就是经过我设计的算法进行处理的”

光纤通信如今作为一个成熟的行业,在研究上需要与产业发展进行紧密结合。因此,诸葛群碧在毕业之后首先选择加入了工业界。同期,他也受聘担任麦吉尔大学的兼职教授,负责共同指导博士生的研究工作。这种横跨工业界和学术界的模式,给诸葛群碧的研究带来了独特的视角,帮助他取得了真正推动行业发展的创新成果。

信号从手机出发,在空中经过几十上百米的传输达到无线基站,再转换为光信号,通过埋在地下的光纤传到百千公里之外的另外一个无线基站,再转换为无线信号,到达另外一个用户的手机。通信领域关系到人们日常生活的方方面面,比如上网课、视频通话等等。

拿 5G 举例,你或许想象过,有一天不再需要朝九晚五去公司上班,在家中和老板同事交流超高清、无延迟;公路上的汽车自己跑,你坐着打盹但交通井然有序;当你回家时,指纹开锁联动,灯和电器自动打开,你可以立即准备晚餐……在 5G 时代,8K 直播、自动驾驶、智能家居、VR、AR、远程医疗等等都将成为现实,而 5G 所基于的通信基础设施的发展,离不开光通信。

光通信对 5G 部署至关重要。工信部通信科技委常务副主任韦乐平说:“‘全光网’是 5G 的起点和最理想承载技术”,5G 的骨干网、承载网、基站与基站之间的连接以及基站进行前传和回传都离不开光通信。

打个比方,如果 5G 网络是毛细血管,那么光纤就是主动脉。简单来说,5G 信号通过基站发射出来,手机接收 5G 的信号使我们能正常上网,而基站的信号则通过光纤传输到电信机房,电信机房也是通过光纤连接。以无人驾驶为例,按每天行驶 1.5 小时计算,每辆无人驾驶汽车产生 4TB 的数据,这些数据来自摄像头、雷达,通过云连接上传至数据中心,数据中心、服务器之间的通信就需要通过光纤来实现。

光纤通信具有通信容量大、中继距离长、保密性能好等优点,而且光通信是整个通信基础设施最重要的组成部分之一。诸葛博士说:“如果没有光纤通信的发展,今天的高速互联网将不复存在,而我们也将回到‘从前邮件很慢,车马很远’的时代。”

实现光联万物的美好愿景

诸葛博士介绍,他的研究方向概括来说就是光纤通信,而核心骨干光网、数据中心光互联和 B5G/6G 光技术是其主要聚焦的三个应用场景。

核心骨干光网是通信的基础设施。骨干网一般都是广域网,作用范围几十公里到几千公里,城市之间、国家之间、大陆之间都是基于光纤来进行通信的。光通信关键要看速率。有人说,如果把 10G 比作老爷车,100G 比作代步车,那么 400G/800G 就如同超级跑车。

诸葛博士的研究帮助打造了一辆“超级跑车”——他在光传输架构、数字算法和编码调制技术方面的研究创新,帮助光通信单波速率从 100G 增长到了 800G。他多次打破光传输速率世界纪录,其中包括首个传输 80 公里的单波 400G 直检光传输系统;他实验演示了首个连续可调速率的光通信系统,并实验首次证明了多子载波系统的光纤非线性增益,近年来都已成为商用系统的重要特性;他还提出了一系列基于机器学习的光监测技术,并实现了商用相干数字芯片中的行业首个 AI 感知算法落地,未来将继续致力于智慧全光网的构建。

(来源:诸葛群碧)

诸葛博士聚焦的第二个领域是数据中心的光互联,尝试研发最低成本的系统,同时满足数据中心通信容量的需求。他相信数据中心是光纤通信在未来的十年或者更长时间能够发挥巨大作用的地方。有研究报告曾指出,随着移动互联网和云计算的发展,全球互联网业务和应用数据处理都在数据中心进行,光通信技术在数据中心得到大量的使用,光通信的应用主体从电信运营商网络转向了数据中心,数据中心成为光通信的最大市场。诸葛群碧带领的团队已在这片疆土开拓。

他们在 2019 年为腾讯数据中心光网络的智能管控平台研发了光纤信道模型,帮助其构建一个低余量的光网络来增加网络容量。这个模型为腾讯数据中心光网络平台提供了先验机制以输出对应配置,赋予了该平台控制器在线诊断能力,实现自动化并最终像智慧管控进行演进。他们的研究成果也被腾讯官方公众号“鹅厂网事”专题报道,成为该公众号唯一的高校合作成果报道。

B5G 和 6G 是通信领域未来十年的聚焦方向,诸葛博士的第三个研究目标则是探索光技术在 B5G/6G 中的应用。他近期受聘华为无线光应用技术能力中心顾问,在未来将与华为展开深度合作,共同推动光与无线的融合,助力 B5G/6G 发展。

诸葛群碧团队将通过和行业领军公司包括华为和腾讯建立深度合作,推动其研究成果进行产业化。他说:“我相信我们的研究成果将对未来光纤通信和光互联技术的发展起到积极的推动作用,为实现光联万物的美好愿景做出我们的贡献。”

聚焦系统和网络层面的基础科学问题和关键技术挑战

从材料到器件到系统,从算法到网络,从光到电再到数字,光通信覆盖的研究领域很广,诸葛群碧的研究则着重于解决在系统和网络层面的基础科学问题和关键技术挑战。

理论上说,实现光通信只需要把通信数据转变为电信号,然后再转为光信号即可。然而,光信号在光纤里传输时,其实有着非常复杂的物理效应,比如激光器中的相位噪声、光纤中线性和非线性的效应、光电转换器件内的物理效应等等,这些效应会影响光信号的质量。

诸葛群碧解释,光在光纤中传输时,光的强度的变化会引起光纤介质折射率的变化,进而导致信号失真,等效于噪声的增加。这一现象称之为光纤非线性效应,也是限制光纤通信容量增长的“罪魁祸首”。另一方面,在实际部署光网络时,需要对光纤中所有噪声的量有一个精确的估计,才能配置最佳速率。

(来源:诸葛群碧)

针对上述问题,诸葛群碧带领团队在光传输和光网络两个方面的关键技术上实现了突破。

他对光纤非线性效应的物理原理和数学模型展开了深入的研究,提出了可以高效补偿非线性损伤的低复杂度数字信号处理算法,通过在数字域根据传输信号来计算非线性失真从而进行补偿,可以有效地降低非线性噪声的量。

在当时研究界纷纷关注提升光通信传输速率的时候,诸葛群碧实验演示了世界首个连续可调速率的光通信系统。此外,他在信号的编码调制技术上进行了创新,设计了新型的低复杂度低时延的概率星座整形算法,通过该算法产生的信号不仅可以容量更多的噪声,在理论上逼近香农极限,还可以匹配光纤非线性信道,使信号在传输时产生更少的非线性噪声。

诸葛群碧说,光通信的研究始于 1966 年,前 30 至 40 年的发展主要是材料和器件的发展带来的,而在过去 20 年,数学和算法的发展则促进了该领域关键性的发展。事实证明,他的研究极具前瞻性。

与此同时,他的团队以构建智慧光网络为目标,将人工智能技术引入光纤信道的感知、建模与管控,通过准确估计系统的信噪比和运行状态,大幅提升光网络总体容量。他基于“算法”即“感知”的理念,创新性地将传输算法与机器学习相结合,通过数据驱动来挖掘传输算法中对于链路损伤的关键信息。

光通信领域有着庞大和成熟的产业体系。诸葛博士介绍:“快速发展的光通信技术,将在未来从主动脉走向毛细血管,渗透到信息时代的方方面面,创造出更多应用价值。光通信技术在光无线融合、片上光互连、工业光网、车载光网络等领域都大有可为。”

培养学生是最重要的KPI

诸葛群碧现在是上海交通大学的副教授。他说:“在我的职业生涯中,对学生的培养会成为对我而言最重要的一个 KPI。我的学生未来是不是能够成长为这个领域内的关键人才,他们能不能为社会为国家做贡献,这些都是我关心的。”

诸葛博士选择在学校任教与他的兴趣是分不开的。对他来说,关注基础科学问题而不是具体技术或产品的研发是他的兴趣和优势所在。比起在公司中研发产品,他更愿意与学生一起做有开创性的工作。“作为一个工程师或者公司里面的科学家,在我的整个职业生涯,或许能解决 1 个科学问题,或者做 10 个产品,我只能做这么多。但是,如果培养 10 个优秀的学生,他们每个人都去做 10 个产品,这个影响跟我在公司里面是不一样的。”诸葛博士说。

在他求学和工作的各个阶段,都很幸运地遇到了“贵人”,包括他的博士生导师 David Plant 教授、华为美国研究所的刘翔副总裁等,都对他的学习和工作给予了很大帮助。加入上海交大之后,团队里的老师们也毫无保留地为他的工作提供了支持。他说:“做学术是一件幸福感很强的事,年轻的学者总是会得到很多前辈的指导和帮助。”诸葛群碧希望将这种精神传承下去,帮助学生们实现他们的人生目标,也为祖国的未来培养更多的人才。

相关问答

什么是光纤通信?_作业帮

[最佳回答]光纤通信技术(opticalfibercommunications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用.光纤通信作为一...

微波布拉格衍射数字信号光纤传输技术实验CO2激光器反射全...

[最佳回答]数字信号光纤传输技术实验,声、光、电转换—白光通讯,CO2激光器和光点反射磁致伸缩效应,做这4个实验有点麻烦的.但是如果材料设备齐全,和你的知...

真正的量子通讯思维实验,今后深空无延滞即时通讯能靠它实现吗?

〔宇宙定律〕一、物质的电磁力{吸引力}{反推力}物质存在电磁力,同一种物质介质相互吸引,不是同一种物质介质相互推。多的物质会把少的物质推成圆球,因为两...

探究光的传播规律实验结果?

1光的传播规律实验结果是光在真空中传播的速度是恒定的,即光速是一个常数。2这是因为光是电磁波,它的传播速度受到介质的影响,而在真空中没有任何介质,所以...

光由玻璃射入空气中的实验?

你好!光由玻璃射入空气中的实验是关于光的折射现象的实验。当光从玻璃等介质射入空气中时,会发生折射现象。折射是指光线从一种介质传播到另一种介质时的偏折...

求两篇计算机网络专业实训报告2000字静态网络..._网络编辑_...

1.静态网络实训报告一、实验目的本次实验的目的是学习静态网络的基本概念和配置方法,掌握网络拓扑图的绘制和路由表的配置方法,以及实现网络间的通...

实验报告蚂蚁是怎样交流信息的?_作业帮

[最佳回答]授课内容:探究蚂蚁的通讯创新表现:1、对实验工具的改进2、对实验方法的改进教学目标知识目标:1通过探究蚂蚁信息交流的方式2认识动物群体中信...

光纤通信基础知识讲解?

通讯用光纤是由通过内部全反射来传输光信号的玻璃构成的。玻璃光纤的标准直径为125微米(0.125毫米),表面覆盖有直径250微米或900微米的树脂保护涂敷层。玻璃光...

材料一:世博园区内布设的第四代移动通信技术TD-LTE试验网...

[最佳回答]示例一:上海世博会是展示科学技术成就的盛会。示例二:高科技让我们生活更美好。(意对即可)

变电站涉网试验包括哪些?

变电站建成后,正式受电之前,必须要经过各种调试测试,必需要符合要求,涉网试验主要是;相位核对,输电线路的综差保护,电子通讯互传接口,各类保护的整定值核...

 十根烤肠是什么意思  瑞宝壁纸 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部